测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 7-13,19.doi: 10.13474/j.cnki.11-2246.2025.1002

• 智慧交通建设与实践 • 上一篇    下一篇

高分辨率SAR遥感影像道路提取综述

姜凯鑫1,2,3, 宋树华1,2,3, 毛健4, 孙振1, 郭国龙2, 董丽2, 郭辉5   

  1. 1. 青岛科技大学数据科学学院, 山东 青岛 266061;
    2. 中科星图智慧科技有限公司, 山东 青岛 266100;
    3. 中科星图低空云科技(青岛)有限公司, 山东 青岛 266100;
    4. 康复大学青岛中心医院, 山东 青岛 266000;
    5. 航天宏图信息技术股份有限公司, 北京 100195
  • 收稿日期:2025-03-21 发布日期:2025-10-31
  • 通讯作者: 宋树华。E-mail:song-shuhua@163.com
  • 作者简介:姜凯鑫(2002-),男,硕士生,主要研究方向为计算机视觉、人工智能和遥感影像识别。E-mail:1571870316@qq.com
  • 基金资助:
    国家重点研发计划(2023YFB3904905;2021YFD1300500;2022YFC3301605);青岛市关键技术攻关及产业化示范类项目(24-1-2-QLJH-7-GX);重庆市自然科学基金创新发展联合基金(中国星网)(CSTB2024NSCQ-LMX0004)

Review of road extraction from high-resolution SAR images

JIANG Kaixin1,2,3, SONG Shuhua1,2,3, MAO Jian4, SUN Zhen1, GUO Guolong2, DONG Li2, GUO Hui5   

  1. 1. School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China;
    2. GEOVIS Wisdom Technology Co., Ltd., Qingdao 266100, China;
    3. GEOVIS Low-altitude Cloud Technology Co., Ltd., Qingdao 266100, China;
    4. Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China;
    5. PIESAT Information Technology Co., Ltd., Beijing 100195, China
  • Received:2025-03-21 Published:2025-10-31

摘要: 鉴于光学遥感影像在夜晚或光照不足条件下,道路提取效果不佳的问题,本文介绍了基于半自动和全自动的SAR遥感影像道路提取方法,以及基于判别模型和生成模式的深度学习的SAR遥感影像道路提取方法,总结了它们的技术原理与适用场景,分析了各类方法在提取精度、计算复杂度及泛化能力方面的优势与局限,为复杂环境下的道路提取任务提供了技术参考。本文同时指出,在提升SAR遥感影像道路提取效果方面,知识蒸馏、扩散模型辅助标注及大模型架构等技术将具有很大的潜力。

关键词: 合成孔径雷达, 道路提取, 半自动方法, 全自动方法, 判别模型, 生成模型

Abstract: In view of the poor performance of optical remote sensing images in road extraction at night or under insufficient lighting conditions, this paper introduces SAR images road extraction methods based on semi-automatic and fully automatic approaches, as well as deep learning methods based on discriminative models and generative models.It summarizes their technical principles and applicable scenarios, analyzes the advantages and limitations of various methods in terms of extraction accuracy, computational complexity, and generalization, which provides technical references for road extraction based on SAR in complex environments.Meanwhile, in order to improve the effect of road extraction based on SAR, it is pointed out that the technologies of knowledge distillation, diffusion model-assisted annotation and large model architectures will have great potential.

Key words: SAR, road extraction, semi-automatic methods, fully automatic methods, discriminative models, generative models

中图分类号: