[1] 钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1): 1-13. [2] DING Yucong,PENG Suping,DU Wenfeng. Ecological disturbance effects of surface vegetation during coal mining in arid regions of Western China[J]. Environmental Monitoring and Assessment,2024,196(6): 498. [3] 赵云昌. 基于“三下”采煤技术应用下的地表下沉机理分析[J]. 测绘通报,2020(6): 156-157. [4] 赵兵朝,路晓晓,贺卫中,等. 陕北黄土沟壑区煤炭开采衍生灾害评价方法[J]. 矿业安全与环保,2019,46(1): 82-86. [5] 王颖,郭惟嘉. 煤炭开采对环境的影响及对策[J]. 煤炭技术,2007,26(5): 3-4. [6] 张艳娜,杨泽元,史晓琼,等. 陕北生态脆弱矿区采煤引起的地表变形研究现状[J]. 煤炭技术,2016,35(1): 118-120. [7] 林芳,冯晓九. 基于概率积分法的济宁某矿地表位移规律研究[J]. 金属矿山,2023(11): 198-204. [8] 苗彦平,谢晓深,陈小绳,等. 浅埋煤层开采地表裂缝发育规律及机理研究[J]. 煤矿安全,2022,53(4): 209-215. [9] 王卫东,郭先顺,王明立,等. 浅埋深多煤层开采地表移动规律实测与分析[J]. 煤炭工程,2023,55(11): 136-141. [10] 何有生,李爱国. 基于InSAR地表沉降监测方法研究[J]. 煤炭技术,2023,42(10): 57-59. [11] GONG Yaqiang,GUO Guangli,WANG Liping,et al. Numerical study on the surface movement regularity of deep mining underlying the super-thick and weak cementation overburden: a case study in Western China[J]. Sustainability,2022,14(3): 1855. [12] 孙庆先,陈清通,牟义,等. 浅埋煤层综采条件下地表沉陷计算方法研究[J]. 煤炭工程,2023,55(9): 146-150. [13] 高超. 基于Matlab曲线拟合求取地表沉陷预计参数的程序实现与优化[J]. 煤矿开采,2018(1): 33-37. [14] 曾光,张鹏飞,王海恒,等. 基于多数据源的采煤沉陷区早期识别及地面形变特征监测: 以神木市大柳塔镇为例[J]. 测绘通报,2024(5): 121-126. [15] ZHANG J,ZHANG P,JI X,et al. Prediction of surface subsidence in Gequan coal mine based on probability integral and numerical simulation[J]. Academic Journal of Engineering and Technology Science,2024,7(1): 25-36. [16] FERNÁNDEZ-DURÁN J J,GREGORIO-DOMÍNGUEZ M M. Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data[J]. Dependence Modeling,2023,11(1): 1106-1119. [17] 迟凤妹,刘国林,陶秋香,等. 联合SBAS-InSAR与概率积分模型的郓城煤矿沉降监测与分析[J/OL]. 地球物理学进展,2024(2024-09-06). https://kns.cnki.net/kcms/detail/11.2982.p.20240905.1800.044.html. |