测绘通报 ›› 2025, Vol. 0 ›› Issue (2): 41-47.doi: 10.13474/j.cnki.11-2246.2025.0208

• 学术研究 • 上一篇    下一篇

非刚性匹配的激光点云与多光谱影像深度融合

石佳俊1, 臧玉府1, 肖雄武2, 张莹滢1   

  1. 1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430072
  • 收稿日期:2024-05-14 发布日期:2025-03-03
  • 通讯作者: 臧玉府。E-mail:002767@nuist.edu.cn
  • 作者简介:石佳俊(2004—),男,研究方向为激光点云智能处理。E-mail:sjj18871351925@163.com
  • 基金资助:
    国家自然科学基金面上项目(42171433);国家自然青年科学基金(41701529;42101449)

Deep fusion of laser point clouds with multi-spectral images based on non-rigid probabilistic matching

SHI Jiajun1, ZANG Yufu1, XIAO Xiongwu2, ZHANG Yingying1   

  1. 1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
  • Received:2024-05-14 Published:2025-03-03

摘要: 机载激光点云和多光谱影像的融合在遥感影像处理、环境监测和城市规划等领域的应用有着非常重要的意义。针对现有融合方法的效率与稳健性较低的问题,本文提出了一种基于非刚性概率匹配的激光点云与多光谱影像深度融合方法。采用Line-CNN深度学习网络提取直线段特征,将其采样为二维散点,并利用非刚性CPD算法匹配不同尺度影像中的离散点,进而通过改进单应矩阵高精度融合两种模态影像,得到具备多光谱信息的机载激光点云。为全面验证方法的性能,本文采用多种场景下的机载激光点云和多光谱影像作为试验数据。试验结果表明,多种复杂场景下离散点匹配准确率高达90%,融合后的影像能够很好地保留原始影像的特征和信息,多种场景下的融合相关系数高达90%以上,且算法较为高效,有利于后续植被监测、环境监测、土地分析等应用。

关键词: 深度学习, 非刚性CPD算法, 单应矩阵, 高精度融合, 跨模态遥感数据

Abstract: The fusion of airborne laser point clouds and multi-spectral images is of great importance for applications in remote sensing image processing, environmental monitoring and urban planning. Aiming at the low efficiency and robustness of the existing fusion methods, this paper proposes a non-rigid probabilistic matching-based deep fusion method for laser point clouds and multi-spectral images. Line-CNN deep learning network is used to extract straight line segment features, which are sampled as 2D scatter points, and non-rigid CPD algorithm is utilized to match discrete points in different scale images, and then the airborne laser point cloud with multi-spectral information is obtained by fusing two modal images with high accuracy through the improved single response matrix. To comprehensively validate the performance of the method, airborne laser point clouds and multi-spectral images from a variety of scenarios are used as experimental data in this paper. Experiments show that the accuracy of discrete point matching under multiple complex scenes is as high as 90%, the fused image can well retain the features and information of the original image, the fusion correlation coefficient under multiple scenes is as high as 90% or more, and the algorithm is more efficient, which is conducive to the subsequent applications such as vegetation monitoring, environmental monitoring, and land analysis.

Key words: deep learning, non-rigid CPD algorithms, single response matrix, high-precision fusion, cross-modal remote sensing data

中图分类号: