测绘通报 ›› 2018, Vol. 0 ›› Issue (12): 74-78.doi: 10.13474/j.cnki.11-2246.2018.0387

• 学术研究 • 上一篇    下一篇

云环境下地籍数据高效并行化的拓扑检查

何群1, 杨宜舟1, 郭甲腾1, 吴立新2, 刘善军1   

  1. 1. 东北大学资源与土木工程学院, 辽宁 沈阳 110004;
    2. 中南大学地球科学与信息物理学院, 湖南 长沙 410012
  • 收稿日期:2018-09-27 修回日期:2018-10-22 出版日期:2018-12-25 发布日期:2019-01-03
  • 作者简介:何群(1972-),女,硕士,中级实验师,主要从事地理信息系统研究。E-mail:hequn@mail.neu.edu.cn
  • 基金资助:
    国家自然科学基金(41671404);中央高校基本科研业务费(N170104019);国家863主题项目课题(2011AA120302)

Efficient Parallelization of Topology Checking for Cadastral Data in Cloud Computing Environment

HE Qun1, YANG Yizhou1, GUO Jiateng1, WU Lixin2, LIU Shanjun1   

  1. 1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China;
    2. School of Geosciences and Info-physics, Zhongnan University, Changsha 410012, China
  • Received:2018-09-27 Revised:2018-10-22 Online:2018-12-25 Published:2019-01-03

摘要: 对于大规模空间数据集,当前拓扑关系串行算法的计算效率已提升至极限,需利用更多的计算资源实现拓扑关系的高效并行计算。本文在分析拓扑关系计算层次特征与拓扑计算特点的基础上,引入Q&R索引实现矢量数据集的划分与非相交矢量数据集过滤,研发了拓扑关系并行算法中间件,在云环境下进行了部署,并应用于大规模宗地数据的质量检查。应用结果表明:在云环境的虚拟化集群资源中,利用本文方法可实现进程间计算任务负载的高度均衡与数据负载的基本均衡;加速比与进程数呈线性正相关,拓扑并行算法的计算效率稳定在80%。本文为基于云环境虚拟化的各种高性能计算环境下海量地籍数据库的拓扑关系质量检查服务提供了一种高效可用的并行计算算法与并行计算中间件。

关键词: 拓扑关系, 并行计算, 云计算, 数据划分, 负载均衡

Abstract: For large-scale spatial data sets, the computational efficiency of the current serial topology checking algorithms have reached their limit. More computing resources are needed to achieve efficient parallel computing of topological relation. Based on the analysis of hierarchical and topological features of topological relational computing, a parallel computing method based on vector data partition and Q&R parallel index was proposed in this paper. A parallel topological relationship computing middleware was developed and deployed in the cloud environment, and applied to the quality checking of cadastral data mass. The application results in the virtualized cluster resources of cloud environment demonstrate that, the proposed method can realize the high balance of computing task load and the basic balance of data load among the process; the acceleration ratio is linearly positively correlated with the number of processes, and the computing efficiency of parallel topological algorithm is stable at 80%. This paper presented an efficient and available parallel computing algorithm and parallel computing middleware in the cloud environment for topological relationship quality checking service of massive cadastral databases in various high-performance computing environments.

Key words: topological relationship, parallel computing, cloud computing, data partition, load balancing

中图分类号: