测绘通报 ›› 2019, Vol. 0 ›› Issue (8): 54-58.doi: 10.13474/j.cnki.11-2246.2019.0251

• 学术研究 • 上一篇    下一篇

半监督离散势理论在遥感影像变化检测中的应用

谢福鼎1, 赫佳妮1, 郑宏亮2   

  1. 1. 辽宁师范大学城市与环境学院, 辽宁 大连 116029;
    2. 辽宁师范大学计算机与信息技术学院, 辽宁 大连 116081
  • 收稿日期:2018-10-22 出版日期:2019-08-25 发布日期:2019-09-06
  • 通讯作者: 郑宏亮。E-mail:zheng-hl@263.net E-mail:zheng-hl@263.net
  • 作者简介:谢福鼎(1965-),男,博士,教授,研究方向为模式识别、遥感影像处理。E-mail:1075939185@qq.com
  • 基金资助:
    国家自然科学基金(41771178;61772252)

Application of semi-supervised discrete potential theory in remote sensing image change detection

XIE Fuding1, HE Jiani1, ZHENG Hongliang2   

  1. 1. College of Urban and Environment, Liaoning Normal University, Dalian 116029, China;
    2. College of Computer science, Liaoning Normal University, Dalian 116081, China
  • Received:2018-10-22 Online:2019-08-25 Published:2019-09-06

摘要: 随着遥感技术的发展,遥感影像变化检测作为一种有效的技术手段,在环境监测、灾害救援等领域发挥了重要作用。然而地物复杂、标记困难等问题导致有效的变化检测存在一定的困难。本文提出了一种基于半监督离散势理论的遥感影像变化检测方法。该方法首先采用一种新的标记样本点的方法得到训练集,然后利用KNN方法构造复杂网络,最后对复杂网络中经典Wu-Huberman算法进行改进并划分网络。所得到的两个社团结构恰好对应了变化部分和不变部分。试验结果表明,基于半监督离散势理论的变化检测方法具有良好的变化检测性能。

关键词: 遥感图像, 变化检测, 半监督分类, 离散势理论, Wu-Huberman算法

Abstract: With the development of remote sensing technology, change detection for remote sensing image provides an effective method in environmental monitoring, disaster relief and many other fields. However, it is still a challenging problem to develop more effective change detection methods due to the complexity of ground-truth and the difficulty of labeling the samples and so on. This paper proposes a remote sensing image change detection method based on semi-supervised discrete potential theory. The suggested method first uses a new method to label the samples to get the training set, then constructs complex network by KNN approach. Finally, it improves the classical Wu-Huberman algorithm in complex network and divides the network. As a result, the obtained two community structures exactly correspond to the change part and the invariant part. Experimental results show that the change detection method based on semi-supervised discrete potential theory has perfect change detection performance.

Key words: remote sensing image, change detection, semi-supervised classification, discrete potential theory, Wu-Huberman algorithm

中图分类号: