测绘通报 ›› 2022, Vol. 0 ›› Issue (1): 26-32.doi: 10.13474/j.cnki.11-2246.2022.0005

• 第八届测绘科学前沿技术论坛获奖论文 • 上一篇    下一篇

基于改进U-Net网络的多源遥感影像洪涝灾害信息提取与变化分析

车子杰, 高飞, 吴兆福, 李振轩   

  1. 合肥工业大学土木与水利工程学院, 安徽 合肥 230000
  • 收稿日期:2021-06-11 发布日期:2022-02-22
  • 通讯作者: 李振轩。E-mail:zxli2019@hfut.edu.cn
  • 作者简介:车子杰(1997-),男,硕士生,研究方向为遥感影像信息提取与变化检测。E-mail:zijie_che@163.com
  • 基金资助:
    安徽省测绘科技专项资金(CHZX201801);中央高校基本科研业务费专项资金(JZ2021HGTA0167)

Multi-source remote sensing image flood disaster information extraction and change analysis based on improved U-Net network

CHE Zijie, GAO Fei, WU Zhaofu, LI Zhenxuan   

  1. College of Civil Engineering, Hefei University of Technology, Hefei 230000, China
  • Received:2021-06-11 Published:2022-02-22

摘要: 基于遥感影像的信息提取与变化分析是检测地球表面变化的重要方法,在城市规划、环境监测、灾害评估等方面应用广泛。合成孔径雷达(SAR)可以穿透云层,实现洪水期的对地观测,但侧视成像会随地形起伏产生叠掩、阴影等现象。DEM可以提供地面点的高程信息,反映地形的起伏变化,但无法提供地物信息。因此,本文提出了一种融合多源遥感影像、基于改进U-Net网络的变化检测方法;并通过试验证明了该方法可以实现高精度、高效的洪涝灾害信息提取。

关键词: U-Net, 深度学习, 变化检测, 数据增强, 高分三号

Abstract: Information extraction and change analysis based on remote sensing images is an important method for detecting changes on the earth's surface, and it has a wide range of applications in urban planning, environmental monitoring, disaster assessment. SAR can penetrate clouds to achieve ground observation during floods, but side-view imaging will cause overlaps and shadows along with terrain undulations. DEM can provide elevation information of ground points, reflecting the undulations of the terrain, but cannot provide surface information. In order to achieve high-precision and high-efficiency extraction of disaster information for the disaster area and degree of the flood area, this paper proposes a change detection method based on U-Net fusion of multi-source remote sensing images. Experimental results show that disaster flood information with high spatial resolution can be extracted efficiently by the method performed in this paper.

Key words: U-Net, deep learning, change detection, data enhancement, GF-3

中图分类号: