测绘通报 ›› 2019, Vol. 0 ›› Issue (9): 13-17.doi: 10.13474/j.cnki.11-2246.2019.0277

• 综述 • 上一篇    下一篇

农作物冠层光谱分析及反演技术综述

李月1, 何宏昌1, 王晓飞1, 张国民2   

  1. 1. 黑龙江大学, 黑龙江 哈尔滨 150001;
    2. 中国科学院北方粳稻分子育种联合研究中心, 黑龙江 哈尔滨 150001
  • 收稿日期:2018-12-29 修回日期:2019-03-21 出版日期:2019-09-25 发布日期:2019-09-28
  • 作者简介:李月(1982-),女,博士,讲师,从事定量遥感、精准施肥的理论和应用研究工作。E-mail:yueliang888@163.com
  • 基金资助:
    国家重点研发计划(2016YFB0502502);黑龙江省物联网感知层与传感网络技术创新服务平台以及黑龙江省省属高等学校基本科研业务费(KJCXZD201704)

Review on crop canopy spectral analysis and retrieval

LI Yue1, HE Hongchang1, WANG Xiaofei1, ZHANG Guomin2   

  1. 1. School of Electrical Engineering, Heilongjiang University, Harbin 150001, China;
    2. Joint Research Center of Molecular Breeding for Japonica Rice of Chinese Academy of Sciences, Harbin 150001, China
  • Received:2018-12-29 Revised:2019-03-21 Online:2019-09-25 Published:2019-09-28

摘要: 农作物的冠层光谱反射率与作物的氮含量、叶绿素含量及叶面积指数等参数之间具有很强的相关性,通过对作物冠层光谱进行分析可反演出作物的生物物理参数,并应用在长势分析、产量预测、病虫害预警等领域。本文首先阐述了作物冠层反射率采集方法,对地面、机载及遥感卫星3个采集层面的优缺点进行了对比;其次给出了植被指数构建原理及常用植被指数,分析了物理模型反演法和统计反演法的复杂度和性能;最后提出了农作物冠层光谱分析及反演技术的下一步发展方向及面临的挑战。

关键词: 冠层光谱分析, 生物物理参数反演, 植被指数, 机器学习, 冠层反射物理模型

Abstract: The crop canopy spectral reflectance has a strong correlation with the biological and physical parameters of crops such as the leaf nitrogen content, the chlorophyll content and the leaf area index. The biological and physical parameters can be retrieved by crop canopy spectral analysis, and applied to the field of growth analysis, yield prediction, pest and disease warning and so on. Firstly, three kinds of canopy reflectance acquisition methods based on ground, airborne and space-borne spectral meters are expounded separately, whose advantages and disadvantages are compared. Secondly, the principle of vegetation index construction is given, and the complexity and performance of physical model based retrieval and statistical retrieval methods are analyzed. Finally, the future and challenges of crop canopy spectral analysis and retrieval are suggested.

Key words: canopy spectral analysis, biological and physical parameters retrieval, vegetation index, machine learning, canopy reflectance physical model

中图分类号: