测绘通报 ›› 2020, Vol. 0 ›› Issue (4): 6-10.doi: 10.13474/j.cnki.11-2246.2020.0103

• 学术研究 • 上一篇    下一篇

图论算法的无人机影像匹配特征点粗差剔除

喜文飞1, 史正涛1, 李国柱2   

  1. 1. 云南师范大学旅游与地理科学学院, 云南 昆明 650500;
    2. 云南海钜地理信息技术有限公司, 云南 昆明 650000
  • 收稿日期:2019-07-09 修回日期:2020-02-29 出版日期:2020-04-25 发布日期:2020-05-08
  • 作者简介:喜文飞(1984-),男,博士生,主要研究无人机图像处理、三维模型构建、变形监测。E-mail:xiwenfei911@163.com
  • 基金资助:
    云南省科技厅面上项目(2017FB078);云南师范大学教改项目(YNJG201845)

UAV image matching feature point coarse error elimination based on image theory algorithm

XI Wenfei1, SHI Zhengtao1, LI Guozhu2   

  1. 1. College of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China;
    2. Yunnan Haiju Geographic Information Technology Co., Ltd., Kunming 650000, China
  • Received:2019-07-09 Revised:2020-02-29 Online:2020-04-25 Published:2020-05-08

摘要: 无人机影像匹配过程中,粗差是不可避免的,因此,获取稳健性较高的特征点进行无人机影像匹配至关重要。传统的方法是采用经典的RANSAC算法进行粗差剔除,该算法受抽样次数、误差阈值的影响,还会残存部分误匹配的特征点。利用图论原理,对SIFT算法提取的特征点进行预处理,通过构建特征点的能量函数剔除能量较低的特征点,可以提高匹配特征点的稳健性,减少特征点的粗差。本文提出了一种新的方法,将图论算法与经典的RANSAC算法相结合进行粗差剔除。该方法命名为GSIFT-RANSAC算法,利用该算法可以提高特征点的稳健性,获取高精度的单应矩阵。采用两组无人机影像进行验证,本文提出的算法与单独利用图论剔除特征点的算法相比,粗差剔除率分别提高了5.31%和14.29%,说明该方法效果较好。

关键词: 无人机影像匹配, 特征点, RANSAC算法, 图论, GSIFT-RANSAC算法

Abstract: In the process of UAV image matching, rough error is inevitable. Therefore, it is very important to obtain feature points with high robustness for UAV image matching. The traditional method is using classical RANSAC algorithm for coarse error elimination, which is affected by the sampling times, error threshold, and remaining partial mismatched points. By using graph theory, the feature points extracted by SIFT algorithm are preprocessed, that is the feature points with lower energy are removed by constructing the energy function of feature points, which can improve the robustness of matching feature points and reduce the feature points coarse error. The paper proposes a new method, which combines the graph theory algorithm with the classical RANSAC algorithm to eliminate the rough error. The method is named GSIFT-RANSAC algorithm, which can improve the robustness of feature points and obtain the homography matrix with high accuracy. Using different data for verification, gross error elimination rate of the algorithm proposed in this paper is 5.31% and 14.29% higher than the algorithm using graph theory to remove feature points alone, which indicates that the effect of proposed method is better.

Key words: UAV image matching, feature points, RANSAC algorithm, graph theory, GSIFT-RANSAC algorithm

中图分类号: