[1] 杨俊涛,康志忠.多尺度特征和马尔可夫随机场模型的电力线场景点云分类法[J].测绘学报,2018,47(2):188-197. [2] 施孟佶,秦开宇,李凯,等.高压输电线路多无人机自主协同巡线设计与测试[J].电力系统自动化,2017,41(10):117-122. [3] 段敏燕.机载激光雷达点云电力线三维重建方法研究[J].测绘学报,2016,45(12):1495. [4] 陈勇,韩晓言,侯国彦,等.激光雷达小型化及其在输电系统中的应用研究[J].电力勘测设计,2013(1):70-73,77. [5] 吕明,盛戈皞,张卫东,等.无人飞行器巡检输电线路的杆塔和导线跟踪算法[J].电力系统自动化,2012,36(9):92-97. [6] 林祥国,张继贤.架空输电线路机载激光雷达点云电力线三维重建[J].测绘学报,2016,45(3):347-353. [7] 彭劲松,许俊,李娟.无人机载激光测量系统在电力上的应用[J].测绘通报,2018(4):152-154. [8] 刘洋,杨必胜,梁福逊.机载激光点云中高压电塔自动识别方法[J].测绘通报,2019(1):34-38. [9] 周汝琴,许志海,彭炽刚,等.一种高压输电走廊机载激光点云分类方法[J].测绘科学,2019,44(3):21-27,33. [10] 赖广陵,秦志远,丁璐.车载LiDAR数据电力线与塔杆提取方法[J].测绘科学技术学报,2016,33(6):617-622. [11] GRILLI E, MENNA F, REMONDINO F. A review of point clouds segmentation and classification algorithm[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W3:339-344. [12] LIU Y,LI Z,HAYWARD R, et al. Classification of airborne LiDAR intensity data using statistical analysis and hough transform with application to power line corridors[C]//Proceedings of 2009 Digital Image Computing:Techniques & Applications.[S.l.]:IEEE, 2010. [13] 赖旭东,戴大昌,郑敏,等.LiDAR点云数据的电力线3维重建[J].遥感学报,2014,18(6):1223-1229. [14] 王丽英,徐艳,李玉.机载LiDAR点云体元化及其在3D滤波中的应用[J].仪器仪表学报,2018,39(7):173-182. [15] IPPOLITO C, KRISHNAKUMAR K, HENING S. Preliminary results of powerline reconstruction from airborne LiDAR for safe autonomous low-altitude urban operations of small UAS[C]//Proceedings of 2016 IEEE Sensors.[S.l.]:IEEE, 2016. [16] QIN X Y,WU G P,YE X H, et al. A novel method to reconstruct overhead high-voltage power lines using cable inspection robot LiDAR data[J]. Remote Sensing, 2017, 9(7):753. [17] LIU X, ZHENG S, LEI X U. Power line automatic extraction algorithm based on LiDAR data[J]. Journal of Geomatics, 2017, 42(4):13-16. [18] SIRMACEK B, LINDENBERGH R. Automatic classification of trees from laser scanning point clouds[J]. Isprs Annals of Photogrammetry Remote Sensing & Spatial Informa, 2015, II-3/W5(4):137-144. [19] ZHANG Z, ZHANG L, TONG X, et al. A multilevel point-cluster-based discriminative feature for ALS point cloud classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(6):3309-3321. [20] NI H, ZHANG J. Classification of ALS point cloud with improved point cloud segmentation and random forests[J]. Remote Sensing Technology & Application, 2017, 9(3):288. [21] MARMANIS D, SCHINDLER K, WEGNER J D, et al. Classification with an edge: improving semantic image segmentation with boundary detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,35(1):158-172. [22] ZHANG Liangpei. Splitting and merging based multi-model fitting for point cloud segmentation[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 78-89. |