[1] 徐启恒,黄滢冰,陈洋.结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法[J].测绘通报,2019(1):50-55. [2] 张续,江涛,胡世明,等.迭代加权多元变化检测算法在高分辨率遥感影像变化检测中应用[J].计算机应用,2019,39(S1):177-181. [3] 赵起超,赵姝雅,刘剋,等.基于实测光谱与Landsat 8影像的白洋淀COD遥感反演[J].现代电子技术,2019,42(3):56-60. [4] 徐全飞,冯旗.基于SURF和矩阵乘法的超大规模遥感影像亚像素配准算法研究[J].红外技术,2017,39(1):44-52. [5] 滕文秀,温小荣,王妮,等.基于迭代H-minima改进分水岭算法的高分辨率遥感影像单木树冠提取[J].激光与光电子学进展,2018,55(12):499-507. [6] SHAO P, SHI W, HE P, et al. Novel approach to unsuper-vised change detection based on a robust semi-supervised FCM clustering algorithm[J]. Remote Sensing, 2016, 8(3):264-269. [7] 刘金丽,陈钊.Landsat 8多光谱数据辅助下的高分影像多尺度分割[J].测绘通报,2019(9):38-43. [8] 冯文卿,张永军.利用多尺度融合进行面向对象的遥感影像变化检测[J].测绘学报,2015,44(10):1142-1151. [9] HAO M, SHI W Z, ZHANG H, et al. A scale-driven change detection method incorporating uncertainty analysis for remote sensing images[J]. Remote Sensing, 2016, 8(9):745-752. [10] 李亮,王蕾,孙晓鹏,等.面向对象变化向量分析的遥感影像变化检测[J].遥感信息,2017,32(6):71-77. [11] CELIK T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(4):772-776. [12] 梅树红,范城城,廖永生,等.结合光谱和纹理特征的林地变更检测[J].测绘通报,2019(8):140-143. [13] WANG L Y, LI Y, WANG Y Q. Research on land use change detection based on an object-oriented change vector analysis method[J]. Journal of Geo-Information Science, 2014, 27(2):74-80. [14] ESPINDOLA G M, CAMARA G, REIS I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14):3035-3040. [15] 魏江,刘潇,梅少辉.基于卷积神经网络的遥感影像去噪算法[J].微电子学与计算机,2019,36(8):59-62. |