测绘通报 ›› 2022, Vol. 0 ›› Issue (2): 5-9.doi: 10.13474/j.cnki.11-2246.2022.0034

• 第八届测绘科学前沿技术论坛获奖论文 • 上一篇    下一篇

基于CNN模型迁移的OLI影像光伏电池板场景识别

王胜利1, 朱寿红2, 蒋毅1   

  1. 1. 江苏省地质测绘院, 江苏 南京 211102;
    2. 江苏省兰德土地工程技术有限公司, 江苏 南京 210019
  • 收稿日期:2021-04-26 发布日期:2022-03-11
  • 作者简介:王胜利(1992-),男,硕士,研究方向为遥感影像智能处理技术、LiDAR数据处理与应用。E-mail:wsli586@163.com
  • 基金资助:
    江苏省地质矿产勘查局科研项目(2020KY11)

Scene recognition of photovoltaic panels based on model migration and convolution neural network

WANG Shengli1, ZHU Shouhong2, JIANG Yi1   

  1. 1. Jiangsu Geologic Surveying and Mapping Institute, Nanjing 211102, China;
    2. Jiangsu Province Rand Project Land Technology Co., Ltd., Nanjing 210019, China
  • Received:2021-04-26 Published:2022-03-11

摘要: 获取光伏电池板的空间分布及动态变化信息对于国土调查、资源环境监测和能源结构评估具有重要意义,然而,传统的光伏电池板的识别依赖于人工设计的中低层次特征,无法克服对象光谱不确定性、空间结构类型复杂等难题,算法普遍存在稳健性不强、效率不高等问题。目前,基于场景单元从遥感影像中提取空间信息,多数算法仅建立在少数标准数据集上,未考虑实际应用中遥感图像质量、空间分辨率等因素对图像场景深度特征表达的影响,制约了遥感技术在城市结构、经济社会知识挖掘方面的深入应用。针对以上情况,本文基于卷积神经网络(CNN)采用迁移学习和模型微调的策略,在中等分辨率的Landsat影像上进行光伏电池板场景识别。结果表明,本文方法能够提取电站场景的多层次特征,在形态结构复杂的电站场景中取得了较好的识别效果。

关键词: 迁移学习, 卷积神经网络, 光伏电池板, 中等分辨率遥感影像, 场景尺度

Abstract: The acquisition of spatial information of photovoltaic (PV) panels is of great significance to the monitoring of resources and environment and the assessment of energy structure. It has been proved that it is feasible to extract spatial information from remote sensing images based on scene units. The traditional PV power plants recognition depends on the middle and low level characteristics of artificial design. It can not overcome the problems of spectral uncertainty and complex object space structure. The algorithms have problems of low robustness and low efficiency. Although some scholars have used the depth model to classify the image scene, most of the algorithms are based on a few standard remote sensing image scene databases, which do not take into account the influence of the image quality, the scene boundary and the scale on the depth feature of the image scene in the actual application and it restricts the deep application of remote sensing technology in urban structure,economic and social knowledge mining. To this aim, this paper adopts the strategy of transfer learning and model adjustment to identify the scene of PV panels in medium resolution remote sensing images. The results show that the proposed method can extract the multi-level features of the PV panels and achieve good recognition results in the PV panels with complex morphological structure.

Key words: transfer learning, convolutional neural network, photovoltaic panels, medium resolution remote sensing image, scene scale

中图分类号: