测绘通报 ›› 2020, Vol. 0 ›› Issue (6): 12-16.doi: 10.13474/j.cnki.11-2246.2020.0172

• 室内定位与导航 • 上一篇    下一篇

基于改进MCNN的密度图在室内定位中的应用

赵琪, 孙立双, 谢志伟   

  1. 沈阳建筑大学交通工程学院, 辽宁 沈阳 110168
  • 收稿日期:2019-07-12 出版日期:2020-06-25 发布日期:2020-07-01
  • 通讯作者: 谢志伟。E-mail:zwxrs16@163.com E-mail:zwxrs16@163.com
  • 作者简介:赵琪(1993-),女,硕士生,研究方向为地理信息系统。E-mail:1085362856@qq.com
  • 基金资助:
    辽宁省科学技术计划(2017231008)

Application of density map based on improved MCNN in indoor localization

ZHAO Qi, SUN Lishuang, XIE Zhiwei   

  1. School of Traffic Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • Received:2019-07-12 Online:2020-06-25 Published:2020-07-01

摘要: 北京商场购物人群众多,易发生人群拥挤踩踏事故,使得确定高密度人群区域的位置变得至关重要,因此本文引入人群密度图,确定图中人群分布情况,得出室内人群的定位信息。首先将采集的人群视频分割为图像帧,并分成训练集和测试集;然后对训练集图片作人头标签处理,生成地面实况密度图,将其作为改进的多列卷积神经网络算法的训练数据生成模型,并将模型应用于测试集图片生成人群密度图;最后运用ArcGIS对人群密度图与室内平面图作地理配准处理,从而实现对高密度人群的定位。研究结果表明,利用人群密度图确定的高密度区域的位置坐标与实际坐标值基本一致,将人群密度图应用于室内定位是可行的。

关键词: 商场数据集, 人群密度图, 多列卷积神经网络, 地理配准, 室内定位

Abstract: A large number of shopping crowds in Beijing shopping malls are prone to crowded and trampled accidents, making it necessary to determine the location of high-density population areas. Therefore, population density maps are introduced to determine the distribution of populations in the map, and the location information of indoor populations is obtained. Firstly, the collected crowd video is divided into image frames and divided into training sets and test sets. Then, the human head label processing is performed on the training set image, and the ground truth density map is generated as the training data of the improved multi-column convolutional neural network algorithm and the model is generated, and the model is applied to the test set image to generate the population density map. Finally, use ArcGIS to georeference the population density map and the indoor plan to achieve high-density population positioning. The results show that the position coordinates of the high-density area determined by the population density map are basically consistent with the actual coordinate values, indicating that the new idea of applying the population density map to indoor localization is feasible.

Key words: mall data set, population density, MCNN, geographical registration, indoor localization

中图分类号: