测绘通报 ›› 2021, Vol. 0 ›› Issue (6): 33-38.doi: 10.13474/j.cnki.11-2246.2021.0172

• 学术研究 • 上一篇    下一篇

激光雷达点云电力线自动提取算法

李德友, 李彩林, 李祥珅, 王柏涛   

  1. 山东理工大学建筑工程学院, 山东 淄博 255000
  • 收稿日期:2020-07-17 发布日期:2021-06-28
  • 通讯作者: 李彩林。E-mail:licailin@sdut.edu.cn
  • 作者简介:李德友(1998—),男,主要研究方向为摄影测量与遥感。E-mail:dalesmail@163.com
  • 基金资助:
    国家自然科学基金(41601496;41701525);山东省重点研发计划(2018GGX106002);山东省艺术科学重点课题(ZD202008267;201806353);自然资源部大湾区地理环境监测重点实验室(深圳大学)开放基金(SZU51029202003)

An automatic algorithm of power line extraction from LiDAR point cloud

LI Deyou, LI Cailin, LI Xiangshen, WANG Baitao   

  1. School of Civil Architectural Engineering, Shandong University of Technology, Zibo 255000, China
  • Received:2020-07-17 Published:2021-06-28

摘要: 针对当前电力线提取方法自动化程度和精度不高的问题,本文从点云数据的空间分布特征出发,提出了一种高效的电力线自动提取方法。首先基于自然裂点法,将点云数据按高程分类后去除地面点;然后对数据进行空间划分,基于子空间的点密度及空间结构特征的差异化,利用地物分割算法去除电塔点和残留的植被点;最后利用基于欧氏距离分割的电力线自动检测算法,实现单根电力线的快速、高精度提取。提取结果和拟合试验表明,该方法能在复杂地形下实现电力线的自动提取,极大提高了电力线的提取效率和精度。

关键词: 机载激光雷达点云, 电力线提取, 分段统计, 欧氏距离分割, 自动检测

Abstract: Aiming at the problem of low automation and accuracy of current power line extraction methods, this paper proposes an automatic power line extraction method based on the spatial distribution characteristics of point cloud data. Firstly, based on the nature breaks, the point cloud data is classified according to the elevation, and the ground points are removed. Then, the data is partitioned spatially. Based on the point density of subspace and the difference of spatial structure features, the pylon points and residual vegetation points are removed by ground object segmentation algorithm. Finally, the power line automatic detection algorithm based on Euclidean distance is used to realize the fast and high-precision extraction of a single power line.The results of extraction and fitting experiments show that this method can automatically extract power lines in complex terrain, and greatly improve the efficiency and accuracy of power line extraction.

Key words: airborne LiDAR point cloud, power line extraction, segment statistics, Euclidean distance segmentation, automatic detection

中图分类号: