[1] PESARESI M, GERHARDINGER A, KAYITAKIRE F. A robust built-up area presence index by anisotropic rotation-invariant textural measure[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(3):180-192. [2] HU Xiangyun, SHEN Jiajie, SHAN Jie, et al. Local edge distributions for detection of salient structure textures and objects[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):466-470. [3] WANG Jun, YANG Xiucheng, QIN Xuebin, et al. An efficient approach for automatic rectangular building extraction from very high resolution optical satellite imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3):487-491. [4] SIRMACEK B, UNSALAN C. Urban-area and building detection using SIFT keypoints and graph theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1156-1167. [5] LI Yansheng, TAN Yihua, DENG Jianjin, et al. Cauchy graph embedding optimization for built-up areas detection from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):2078-2096. [6] 陶超,邹峥嵘,丁晓利.利用角点进行高分辨率遥感影像居民地检测方法[J].测绘学报, 2014, 43(2):164-169. [7] 林祥国,宁晓刚.融合直角点和直角边特征的高分辨率遥感影像居民点提取方法[J].测绘学报, 2017, 46(1):83-89. [8] TOURNAIRE O, BRÉDIF M, BOLDO D, et al. An efficient stochastic approach for building footprint extraction from digital elevation models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(4):317-327. [9] OK A O. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 86:21-40. [10] 张戬,高雅.一种基于深度学习的变化检测方法及实现[J].江苏科技信息, 2020, 37(32):40-44, 57. [11] 王萌.基于高分辨率遥感影像的变化检测方法研究[D].成都:电子科技大学, 2020. [12] 王志有,李欢,刘自增,等.基于深度学习算法的卫星影像变化监测[J].计算机系统应用, 2020, 29(1):40-48. [13] 向阳.基于编码解码的高分辨率遥感图像变化检测[D].徐州:中国矿业大学, 2020. [14] 綦晓杰.基于深度学习的城市高分辨率遥感图像语义分割模型优化[D].徐州:中国矿业大学, 2020. [15] BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary®ion segmentation of objects in N-D images[C]//Proceeding of 8th IEEE Intemational Conference on Computer Vision.[S.I.]:IEEE,2001. |