测绘通报 ›› 2022, Vol. 0 ›› Issue (6): 76-81.doi: 10.13474/j.cnki.11-2246.2022.0175.

• 学术研究 • 上一篇    下一篇

一种稳健的无人机影像三维重建方法

于广瑞1,2, 刘兴春2, 时春霖1,3, 王智超2   

  1. 1. 61206 部队, 北京 100042;
    2. 32023部队, 辽宁 大连 116023;
    3. 信息工程大学, 河南 郑州 450001
  • 收稿日期:2021-08-30 发布日期:2022-06-30
  • 通讯作者: 时春霖。E-mail:1361972952@qq.com
  • 作者简介:于广瑞(1988-),男,硕士,工程师,主要从事摄影测量与遥感工作。E-mail:823836547@qq.com
  • 基金资助:
    国家自然科学基金(41804034;41804031;42074013)

A robust 3D reconstruction method of UAV images

YU Guangrui1,2, LIU Xingchun2, SHI Chunlin1,3, WANG Zhichao2   

  1. 1. Troops 61206, Beijing 100042, China;
    2. Troops 32023, Dalian 116023, China;
    3. Information Engineering University, Zhengzhou 450001, China
  • Received:2021-08-30 Published:2022-06-30

摘要: 针对传统摄影测量理论对航线规划、飞行姿态、影像重叠等航摄条件要求高,无人机高效保障优势不明显的问题,本文借助计算机视觉理论,提出了一种稳健的运动恢复结构(SFM)技术。首先,利用李代数旋转平均方法,将空间旋转关系的矩阵表达形式转换为向量的线性表达形式;然后,在最小二乘平差之前,引入L1范数进行迭代初值优化,求解全局一致性旋转参数;最后,将位移和旋转参数的坐标系进行统一,实现匹配点三维坐标计算。试验结果表明,本文基于全局式SFM的无人机影像三维重建技术较传统摄影测量方法解算精度更高,三维点云重建效果更佳。在差分GPS摄站坐标辅助的光束法平差下,点位测量精度优于0.3 m;在不同航线布设条件下,影像解算的成功率均可达100%。

关键词: 全局式SFM, 三维重建, 李代数, 最小二乘, 对地定位

Abstract: Aiming at the problem that traditional photogrammetry theory has high requirements for aerial photography conditions such as route planning, flight attitude and image overlap, yet unmanned aerial vehicle (UAV) has no obvious advantage of efficient support. Based on the theory of computer vision, a robust structure from motion(SFM) technique is proposed in this paper. Firstly, the matrix expression of the spatial rotation relation is transformed into the linear expression of the vector by using the rotation average method of Lie algebra. Then, before the least square adjustment, the L1 norm is introduced to optimize the initial value iteratively to solve the global consistent rotation parameters. Finally, the coordinate system of displacement and rotation parameters are unified to realize the 3D coordinate calculation of matching points. The experimental results show that, the UAV image 3D reconstruction technology based on global SFM has higher accuracy than the traditional photogrammetry method, and the 3D point cloud reconstruction effect is better. The accuracy of point position measurement is better than 0.3 m under the beam adjustment aided by differential GPS station coordinates. Under different route layout conditions, the success rate of image solution is 100%.

Key words: global SFM, 3D reconstruction, Lie algebra, least squares, ground positioning

中图分类号: