测绘通报 ›› 2022, Vol. 0 ›› Issue (9): 74-79,104.doi: 10.13474/j.cnki.11-2246.2022.0267

• 学术研究 • 上一篇    下一篇

结合注意力机制和Bi-LSTM的降雨型滑坡位移预测

唐菲菲1, 唐天俊1,2, 朱洪洲3, 胡川1, 马英1, 李昕4   

  1. 1. 重庆交通大学智慧城市学院, 重庆 400074;
    2. 重庆工商职业学院城市建设工程学院, 重庆 400052;
    3. 重庆交通大学交通土建工程材料国家地方联合工程实验室, 重庆 400074;
    4. 长安大学地质工程与 测绘学院, 陕西 西安 710054
  • 收稿日期:2022-06-22 发布日期:2022-09-30
  • 作者简介:唐菲菲(1980—),女,博士,副教授,研究方向为地质灾害监测预警。E-mail:fftang80@126.com
  • 基金资助:
    国家重点研发计划(2021YFB2600603);重庆市教委科学技术研究项目(KJQN201900728)

Rainfall landslide deformation prediction based on attention mechanism and Bi-LSTM

TANG Feifei1, TANG Tianjun1,2, ZHU Hongzhou3, HU Chuan1, MA Ying1, LI Xin4   

  1. 1. School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China;
    2. College of Urban Construction Engineering, Chongqing Technology & Business Institute, Chongqing 400052, China;
    3. National & Local Joint Engineering Laboratory of Transportation and Civil Engineering Material, Chongqing Jiaotong University, Chongqing 400074, China;
    4. School of Geological Engineering and Geomantics, Chang'an University, Xi'an 710054, China
  • Received:2022-06-22 Published:2022-09-30

摘要: 受季节降雨波动和邻近点位的牵引作用影响,滑坡位移呈阶梯状变化趋势。为有效预测该类滑坡的位移,本文提出一种基于注意力机制的双向长短时记忆(Bi-LSTM)神经网络位移预测模型。首先,建立滑坡监测累计位移时间序列模型,将滑坡累计位移分解为趋势项和周期项;然后,分析滑坡因子与趋势项及周期项的相关性,采用多项式回归对趋势项进行拟合,通过基于注意力机制的Bi-LSTM对周期项进行预测。试验结果表明:基于注意力机制的Bi-LSTM预测模型具有稳健的泛化能力,能有效捕获不同时序数据间的相关性;预测结果精度平均绝对误差为0.088 mm,平均均方误差为0.042 mm,相比常规的长短时记忆(LSTM)神经网络模型,本文方法的预测结果精度更高。

关键词: 降雨型滑坡, 位移预测, 时间序列分解, 注意力机制, 双向长短时记忆神经网络

Abstract: Affected by seasonal rainfall fluctuations and the traction of adjacent points, the landslide displacement shows a step-like change trend. In order to predict the displacement effectively, the attention mechanism is introduced into bidirectional long-short term memory (Bi-LSTM) neural network prediction model in this paper. Firstly, a landslide monitoring cumulative displacement time series model is established to decompose the landslide cumulative displacement into a trend item and a period item. Then, the correlation coefficient among the landslide factor, the trend item and the period item are analyzed, and the polynomial regression is used to fit the trend item. For the period item prediction, the attention mechanism-based Bi-LSTM neural network prediction model is constructed. Taking a landslide data in Chongqing as an example, the experiment result shows that the proposed model has better robust generalization ability and can capture the correlation between different time series data effectively. The average absolute error of prediction accuracy is 0.088 mm, and the average mean square error is 0.042 mm. Compared with common long-short term memory neural network, the model proposed in this paper has higher prediction accuracy.

Key words: rainfall landslide, deformation prediction, time series decomposition, attention mechanism, bidirectional long-short term memory neural network

中图分类号: