测绘通报 ›› 2023, Vol. 0 ›› Issue (9): 30-34,63.doi: 10.13474/j.cnki.11-2246.2023.0260

• 学术研究 • 上一篇    下一篇

基于卡尔曼滤波优化航向的PDR算法

朱军桃, 林知宇, 李海林, 任招财, 陈荣生, 兰荣添, 代程远   

  1. 桂林理工大学, 广西 桂林 541004
  • 收稿日期:2022-12-04 修回日期:2023-08-07 发布日期:2023-10-08
  • 作者简介:朱军桃(1968—),男,硕士,教授,研究方向为工程测量与测绘数据处理。E-mail:glzjt@163.com
  • 基金资助:
    国家自然科学基金(41461089)

PDR algorithm based on Kalman filter for optimizing heading

ZHU Juntao, LIN Zhiyu, LI Hailin, REN Zhaocai, CHEN Rongsheng, LAN Rongtian, DAI Chengyuan   

  1. Guilin University of Technology, Guilin 541004, China
  • Received:2022-12-04 Revised:2023-08-07 Published:2023-10-08

摘要: 基于智能手机平台的行人航位推算(PDR)技术因其技术条件较为成熟且易于大范围实现,已成为国内外室内定位研究的热点。但智能手机传感器的精度有限,且室内地磁信息会受到室内电磁环境的干扰,进而影响PDR算法的定位精度。因此,本文以智能手机为研究载体,提出了基于卡尔曼滤波的智能手机航向优化方法;通过融合智能手机的地磁与陀螺仪传感器数据进行理论研究与现场测试,并优化了PDR算法中的航向精度,优化后定位的平均误差提升至1.36 m。

关键词: 卡尔曼滤波, 室内定位, PDR算法, 陀螺仪, 智能手机

Abstract: PDR technology based on the smartphone platform has become a hotspot in indoor positioning research at home and abroad because of its mature technical conditions and ease of realization on a wide scale. However, the accuracy of smartphone sensors is limited, and the geomagnetic information in the indoor environment will be interfered with by the indoor electromagnetic environment, which will affect the positioning accuracy of the PDR algorithm. Therefore, this paper proposes a smartphone heading optimization method based on the Kalman filter, with the smartphone as the research carrier. The theoretical study and field test are conducted by fusing the geomagnetic and gyroscope sensor data of smartphones, and the heading accuracy in the PDR algorithm is optimized. The average error of the optimized positioning improved to 1.36 m.

Key words: Kalman filtering, indoor localization, PDR algorithm, gyroscope, smartphone

中图分类号: