[1] 李德仁,姚远,邵振峰.智慧城市中的大数据[J].武汉大学学报(信息科学版),2014,39(6):631-640. [2] 杨必胜,梁福逊,黄荣刚.三维激光扫描点云数据处理研究进展、挑战与趋势[J].测绘学报,2017,46(10):1509-1516. [3] PUENTE I,GONZÁLEZ-JORGE H,MARTÍNEZ-SÁNCHEZ J,et al.Review of mobile mapping and surveying technologies[J].Measurement,2013,46(7):2127-2145. [4] GUO Yulan,WANG Hanyun,HU Qingyong,et al.Deep learning for 3D point clouds:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(12):4338-4364. [5] CHEN Xiaozhi,MA Huimin,WAN Ji,et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,USA:IEEE,2017:6526-6534. [6] SU Hang,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile:IEEE,2016:945-953. [7] MATURANA D,SCHERER S.VoxNet:a 3D Convolutional Neural Network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Hamburg,Germany:IEEE,2015:922-928. [8] RIEGLER G,ULUSOY A O,GEIGER A.OctNet:learning deep 3D representations at high resolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,USA:IEEE,2017:6620-6629. [9] CHARLES R Q,HAO Su,MO Kaichun,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,USA:IEEE,2017:77-85. [10] QI C R,YI Li,SU Hao,et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM Press,2017:5105-5114. [11] JIANG Mingyang,WU Yiran,ZHAO Tianqi,et al.PointSIFT:a SIFT-like network module for 3D point cloud semantic segmentation[EB/OL].[2023-01-01].https://arxiv.org/abs/1807.00652. [12] LI Y,BU R,SUN M,et al.PointCNN [J].Computer Vision and Pattern Recognition,2018:1801. [13] HU Qingyong,YANG Bo,XIE Linhai,et al.RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,USA:IEEE,2020:11105-11114. [14] 杨必胜,董震.点云智能研究进展与趋势[J].测绘学报,2019,48(12):1575-1585. [15] KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid,Spain:IEEE,2019:1-8. [16] QI C R,LIU Wei,WU Chenxia,et al.Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE,2018:918-927. [17] WULFF F,SCHÄUFELE B,SAWADE O,et al.Early Fusion of Camera and Lidar for robust road detection based on U-Net FCN[C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV).Changshu,China:IEEE,2018:1426-1431. [18] HE Kaiming,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy:IEEE,2017:2980-2988. [19] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of 2016 IEEE Transactions on Pattern Analysis and Machine Intelligence.[S.l.]:IEEE,2016:1137-1149. [20] ZHANG Wuming,QI Jianbo,WAN Peng,et al.An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J].Remote Sensing,2016,8(6):501. |