测绘通报 ›› 2023, Vol. 0 ›› Issue (10): 74-79,104.doi: 10.13474/j.cnki.11-2246.2023.0298

• 学术研究 • 上一篇    下一篇

利用多特征协同深度网络的高分遥感影像分类

胡春霞1,2, 聂翔宇1,2, 林聪1,2,3, 傅俊豪1,2, 储征伟1,2   

  1. 1. 南京市测绘勘察研究院股份有限公司, 江苏 南京 210019;
    2. 南京市时空信息智能服务工程研究 中心, 江苏 南京 210019;
    3. 武汉大学测绘遥感信息工程国家重点试验室, 湖北 武汉 430079
  • 收稿日期:2023-01-06 发布日期:2023-10-28
  • 通讯作者: 林聪。E-mail:lcnju1994@163.com
  • 作者简介:胡春霞(1977-)女,硕士,高级工程师,主要从事二三维地理信息智能采集、建库建模方面技术研究与应用。E-mail:huch0004@e.ntu.edu.sg
  • 基金资助:
    国家自然科学基金重点项目(42130105);南京市测绘勘察研究院股份有限公司科研项目(2021RD02)

High-resolution remote sensing image classification based on multi-feature collaborative deep network

HU Chunxia1,2, NIE Xiangyu1,2, LIN Cong1,2,3, FU Junhao1,2, CHU Zhengwei1,2   

  1. 1. Nanjing Research Institute of Surveying, Mapping and Geotechnical Investigation, Co., Ltd., Nanjing 210019, China;
    2. Nanjing Engineering Research Center of Spatio-temporal Information Intelligent Services, Nanjing 210019, China;
    3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China
  • Received:2023-01-06 Published:2023-10-28

摘要: 基于深度卷积神经网络的高空间分辨率遥感影像(高分影像)分类是当前遥感智能解译技术领域的研究热点之一。然而,现有的分类网络未充分考虑多类型特征间的协同性,无法有效捕获高分影像中复杂的地物空间关系。为进一步挖掘空间信息、提高分类精度,本文提出了一种多特征协同深度网络(MFCDN)学习算法。在MFCDN中,首先提取多类型的浅层特征作为网络输入,随后利用多尺度特征提取模块获取不同空间尺度的地物信息。然后经过通道和空间注意力机制动态加权后,采用多个特征提取层和数据下采样层提取语义信息,并通过逐元素相加的方式进行特征融合。最后,使用多层感知机结合Softmax函数获取分类结果。试验结果证明,MFCDN在分类精度和泛化能力方面都优于相关方法。

关键词: 高分影像, 分类, 多特征协同, 深度卷积神经网络, 注意力机制

Abstract: The classification of high-resolution remote sensing image (HSRI) based on deep convolutional neural network (DCNN) is one of the hotspots in remote sensing intelligent interpretation technology. However, existing classification networks rarely exploited the collaborative effect of multi-features, and cannot capture the complex spatial relationships of ground objects in HSRI. In order to further utilize spatial information and improve classification accuracy, we propose a multi-features collaborative deep network (MFCDN). In the proposed method, multi-type shallow features are first extracted as the input of MFCDN. Then, the multi-scale feature extraction module is utilized to extract the feature information of different spatial scales. Next, after dynamic weighting by channel and spatial attention mechanisms, multiple feature extraction layers and down-sampling layers are used to extract semantic information and perform feature fusion by element-by-element addition. Finally, the classification results are obtained through the multilayer perceptron combined with the Softmax function. Experimental results demonstrate that the proposed MFCDN outperforms other related methods in teams of classification accuracy and generalization performance.

Key words: high-resolution remote sensing image, classification, multi-feature collaboration, deep convolutional neural networks, attention mechanism

中图分类号: