测绘通报 ›› 2023, Vol. 0 ›› Issue (7): 177-182.doi: 10.13474/j.cnki.11-2246.2023.0221

• 测绘地理信息技术应用案例 • 上一篇    

融合自适应最优邻域和卷积神经网络的三维点云分类

张清波1, 严加栋2   

  1. 1. 江苏城乡建设职业学院, 江苏 常州 213000;
    2. 南京杰图空间信息技术有限公司, 江苏 南京 210000
  • 收稿日期:2023-02-03 出版日期:2023-07-25 发布日期:2023-08-08
  • 作者简介:张清波(1979-),男,硕士,主要研究方向为变形监测。E-mail:156426163@qq.com
  • 基金资助:
    江苏省高等教育教改研究立项课题(2021JSJG451)

Fusing adaptive optimal neighborhoods and convolutional neural networks for 3D point cloud classification

ZHANG Qingbo1, YAN Jiadong2   

  1. 1. Jiangsu Urban-Rural Construction Vocational College, Changzhou 213000, China;
    2. Nanjing Jietu Space Information Technology Co., Ltd., Nanjing 210000, China
  • Received:2023-02-03 Online:2023-07-25 Published:2023-08-08

摘要: 针对点云分类中提取单个点自身特征所需的邻域尺寸选择,以及低层次特征设计烦琐且表达地物属性能力较弱等问题,本文提出了一种自适应选择单点最优邻域尺寸及学习泛化能力更强的深层次特征的三维点云分类方法。首先基于自适应最优邻域尺寸选择获得每个点的最优局部邻域信息,继而基于局部邻域信息提取点云低层次特征;然后设计一种以待分类点低层次特征为输入的卷积神经网络模型,学习能反映目标地物内在属性的深层次特征并实现分类;最后采用拓普康公司三维点云数据集进行试验,该数据集通过一个配备TOPCON GLS-2200三维激光扫描仪的移动平台获得。试验结果表明,本文方法分类的总体精度达90.48%,优于文中其他点云分类方法。

关键词: 点云分类, 自适应最优邻域尺寸选择, 深层次特征, 神经网络

Abstract: We propose a 3D point cloud classification method that adaptively selects the optimal neighborhood size of a single point and learns deep-level features with stronger generalization ability. Firstly, we obtain the optimal local neighborhood information of each point based on the adaptive optimal neighborhood size selection, and then extract the low-level features of the point cloud based on the local neighborhood information; then we design a convolutional neural network model with the low-level features of the points to be classified as the input, learn the deep-level features that can reflect the inherent properties of the target features and realize the classification. Finally the experiment is conducted using Topcon's 3D point cloud dataset, which is obtained by a mobile platform equipped with a TOPCON GLS-2200 3D laser scanner. The results show that the overall accuracy of the classification results of this paper reaches 90.48%, which is better than other point cloud classification methods.

Key words: point cloud classification, adaptive optimal neighborhood size selection, deep level features, neural networks

中图分类号: