测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 70-75.doi: 10.13474/j.cnki.11-2246.2023.0361

• 学术研究 • 上一篇    下一篇

基于改进YOLOX算法的给水管道内缺陷智能识别与定位

苏常旺1, 胡少伟2, 张海丰3, 潘福渠4, 单常喜1   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 郑州大学水利与土木工程学院, 河南 郑州 450001;
    3. 山东龙泉管道工程股份有限公司, 江苏 常州 277599;
    4. 山东东信塑胶科技有限公司, 山东 聊城 252000
  • 收稿日期:2023-03-13 出版日期:2023-12-25 发布日期:2024-01-08
  • 通讯作者: 胡少伟。E-mail:hushaowei@zzu.edu.cn
  • 作者简介:苏常旺(1996-),男,博士生,主要研究方向为管道智能监测与检测。E-mail:1533661722@qq.com
  • 基金资助:
    重庆市自然科学基金创新群体科学基金(cstc2020jcyj-cxttX0003);国家自然科学基金重点项目(52130901;51739008);重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbX0013);泰山产业领军人才工程专项经费

Intelligent identification and location of defects in water supply pipeline based on improved YOLOX algorithm

SU Changwang1, HU Shaowei2, ZHANG Haifeng3, PAN Fuqu4, SHAN Changxi1   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    2. College of Water Resources and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China;
    3. Shandong Longquan Pipeline Engineering Co., Ltd., Changzhou 277599, China;
    4. Shandong Dongxin Plastic Technology Co., Ltd., Liaocheng 252000, China
  • Received:2023-03-13 Online:2023-12-25 Published:2024-01-08

摘要: 针对给水管道内缺陷难以快速实时自动化检测的问题,本文基于实际工程项目中采集到的管道缺陷数据集,通过增加注意力模块,得到改进后的新型YOLOX算法模型,从而提出了一种给水管道智能识别与定位方法。利用视频抽帧的方式制作数据集并进行算法模型的训练与预测。测试结果表明:①基于注意力机制的YOLOX算法模型可以达到平均94%的测试精度,均值平均精度达到84%,平均识别速度为16 m/s;②新模型与其他2种常用算法模型(YOLOV3和Fast R-CNN)的训练结果进行对比,其综合性能最好。本文所提出的算法模型同样可以应用于视频实时检测,为给水管道内缺陷智能识别定位提供了一种高效精确的检测技术和方法。

关键词: 给水管道缺陷, 改进YOLOX算法, 注意力机制, 识别与定位

Abstract: To solve the problem of difficult and slow real-time automated detection of defects in water supply pipelines, a new intelligent identification and positioning method for water supply pipelines is proposed based on a dataset of pipeline defect data collected from actual engineering projects. The new YOLOX algorithm model, which incorporates an attention module, is developed and used for algorithm training and prediction using a dataset of video frames. Test results show that the YOLOX algorithm model with attention mechanism achieved an average testing accuracy of 94%, a mAP value of 84%, and an average recognition speed of 16 m/s. Additionally, compared with three other commonly used algorithm models (YOLO V3 and Fast R-CNN), the new model showed the best overall performance. This proposed model can also be applied to real-time video detection, providing an efficient and accurate detection technology and method for the intelligent identification and positioning of defects in water supply pipelines.

Key words: defects in water supply pipeline, improved YOLOX algorithm, attention mechanism, identification and localization

中图分类号: