测绘通报 ›› 2023, Vol. 0 ›› Issue (12): 88-93.doi: 10.13474/j.cnki.11-2246.2023.0364

• 学术研究 • 上一篇    

耦合递归特征消除与二维CNN的滑坡敏感性评价

张沛, 李英冰, 张镇平, 胡露太   

  1. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2023-02-22 发布日期:2024-01-08
  • 通讯作者: 李英冰。E-mail:ybli@whu.edu.cn
  • 作者简介:张沛(1999-),女,硕士生,主要研究方向为应急灾害管理。E-mail:peizhang@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFC1512401)

Combining recursive feature elimination and 2D CNN for landslide susceptibility evaluation

ZHANG Pei, LI Yingbing, ZHANG Zhenping, HU Lutai   

  1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2023-02-22 Published:2024-01-08

摘要: 针对传统滑坡敏感性评价方法仅考虑滑坡点本身的影响因子信息,而忽略周围空间信息的问题,本文提出了一种耦合递归特征消除与二维卷积神经网络相结合的方法。首先通过递归特征消除对滑坡影响因子进行排序与筛选;其次裁取二维特征因子集输入添加了L2正则化、Dropout等优化方法的二维CNN中,顾及滑坡周围的空间信息,在保证模型精度与泛化能力的基础上预测滑坡敏感性;然后以九寨沟地区为试验区,选取高程、岩性等14个相关因子作为滑坡影响因素,预测试验区的滑坡发生概率并绘制滑坡敏感性图;最后使用Logistic模型和带有3种不同核函数(线性核函数、径向基核函数、Sigmoid核函数)的SVM模型进行对比验证。结果表明,本文方法具有最高的准确度与AUC,且具有效性与可靠性。

关键词: 滑坡敏感性, 递归特征消除, 二维卷积神经网络, L2正则化, 支持向量机

Abstract: In response to the problem that the traditional landslide susceptibility analysis methods only consider the impact factor information of the landslide point itself and ignore the surrounding spatial information, a method that combines recursive feature elimination and a 2D convolutional neural network is proposed. Firstly, the recursive feature elimination method is used to rank and filter the landslide impact factors. Subsequently, the 2D feature factor set is cropped and fed into a 2D CNN with L2 regularization, Dropout, and other optimization methods, and the spatial information around the landslide is taken into account to predict the landslide susceptibility while ensuring the prediction accuracy and generalization ability of the model. In this paper, the Jiuzhaigou area is taken as the experimental area, and 14 relevant factors such as elevation and lithology are selected as landslide-influencing factors to predict the probability of landslide occurrence and draw a landslide susceptibility map. Finally, a logistic model and three SVM models with different kernel functions (linear kernel function, radial basis kernel function, and sigmoid kernel function) are used for comparison and validation. The experimental results show that the proposed method has the highest accuracy and AUC, which proves the validity and reliability of the proposed method.

Key words: landslide susceptibility, recursive feature elimination, 2D convolutional neural network, L2 regularization, support vector machine

中图分类号: