测绘通报 ›› 2023, Vol. 0 ›› Issue (2): 40-45.doi: 10.13474/j.cnki.11-2246.2023.0038

• 学术研究 • 上一篇    下一篇

联合类别筛选与重排序的交叉视角图像地理定位

李子彧, 周维勋, 耿万轩   

  1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2022-03-10 发布日期:2023-03-01
  • 通讯作者: 周维勋。E-mail:zhouwx@nuist.edu.cn
  • 作者简介:李子彧(2000-),男,主要研究方向为遥感图像检索。E-mail:2839887949@qq.com
  • 基金资助:
    国家自然科学基金(42001285);江苏省自然科学基金(BK20200813);2021年江苏省大学生创新训练项目(202110300053)

Cross-view image geolocalization combining category filtering and reranking

LI Ziyu, ZHOU Weixun, GENG Wanxuan   

  1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2022-03-10 Published:2023-03-01

摘要: 针对交叉视角图像视角差异大导致地理定位精度较低的问题,本文以孪生网络为基本结构,提出了一种基于相似度学习并联合场景类别筛选与重排序的定位方法。首先,对交叉视角图像进行相似度学习,并根据相似度大小对参考遥感图像进行排序;然后,通过训练SVM分类器获取地面图像与遥感图像的场景类别;最后,基于特征相似度并利用场景类别信息与重排序实现地理定位。试验结果表明,相比传统的基于特征匹配的地理定位方法,本文方法可有效提高交叉视角图像地理定位的精度,且类别筛选与重排序对于地理定位具有有效性。

关键词: 卷积神经网络, 地理定位, 特征相似度, 类别筛选, 重排序

Abstract: To solve the problem that cross-view images have great viewpoint difference and thus resulting in low geolocalization accuracy, this paper takes Siamese network as the basic structure and proposes a localization method based on similarity learning and scene category filtering, as well as reranking. Firstly, the cross-view images are used for similarity learning, and the reference remote sensing images are sorted according to the similarity values. Then, the categories of ground-view and remote sensing images are obtained by training SVM classifier. Finally, geolocalization is performed using feature similarity and scene category information, as well as reranking. The experimental results show that the proposed method can improve geolocalization performance compared to conventional feature matching-based methods. Moreover, the results also demonstrate the effectiveness of scene category filtering and reranking for geolocalization.

Key words: convolutional neural network, geolocalization, feature similarity, category filtering, reranking

中图分类号: