测绘通报 ›› 2024, Vol. 0 ›› Issue (3): 1-7.doi: 10.13474/j.cnki.11-2246.2024.0301

• 耕地监测的遥感应用 •    下一篇

基于高分七号影像自动提取东北黑土区侵蚀沟的方法

陈昶, 张岩, 李坤衡, 杨润泽, 张俊彬, 梁彦荣   

  1. 北京林业大学水土保持学院, 北京 100083
  • 收稿日期:2023-06-25 发布日期:2024-04-08
  • 通讯作者: 张岩,E-mail:zhangyan9@bjfu.edu.cn
  • 作者简介:陈 昶(1999—),男,硕士生,研究方向为地理信息遥感影像处理。E-mail:2362960506@qq.com
  • 基金资助:
    国家重点研发计划(2021YFD1500700)

A method of automatic mapping of gullies based on GF-7 satellite image in the black soil region in Northeast China

CHEN Chang, ZHANG Yan, LI Kunheng, YANG Runze, ZHANG Junbin, LIANG Yanrong   

  1. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Received:2023-06-25 Published:2024-04-08

摘要: 东北黑土区沟蚀严重且分布面积广,目前对其进行监测大多基于目视解译,自动化程度低,急需一种快速提取方法。本文选取沟蚀严重的黑龙江省宾县马蛇子河流域,基于高分七号影像,以目视解译结果为参照,比较流向边缘检测、机器学习、深度学习3种方法自动提取侵蚀沟的精度。结果表明:①流向边缘检测方法依赖高精度地形数据,高分七号立体像对生成的地形数据垂直精度低,侵蚀沟整体提取精度仅为6.7%,无法用于切沟和浅沟的自动提取;②机器学习方法需要人为设置分割参数并设计分类特征,自动化程度较低,侵蚀沟整体提取精度可达50.7%,对切沟识别精度可达83.1%,但对浅沟识别精度仅为9.2%;③深度学习方法采用端对端的模式,无须人为设计特征提取器,自动化程度高,整体提取精度可达60.8%,对切沟识别精度可达68.1%,对浅沟识别精度可达69.7%。

关键词: 东北黑土区, 高分七号影像, 流向边缘检测, 机器学习, 深度学习

Abstract: In the black soil region of Northeast China, gully erosion is severe and widespread. Currently, gully monitoring in this area relies predominantly on manual interpretation, highlighting the urgent need for a rapid extraction method. This study selects the Mashezi River Basin in Binxian country, Heilongjiang province, a region heavily affected by gully erosion, as study area. Utilizing GF-7 satellite imagery and comparing with manual interpretation results, the accuracy of three automatic gully extraction methods is evaluated: flow-directional detection, machine learning and deep learning. The findings are as follows: ① The flow-directional detection method depends on high-precision topographic data. The vertical accuracy of topographic data generated from GF-7 stereo images is poor, resulting in an overall extraction accuracy of only 6.7%, and this method is unable to automatically extract permanent gullies and ephemeral gullies from GF-7. ②The machine learning approach requires manual setting of segmentation parameters and design of classification features, limiting its degree of automation. It achieves an overall extraction accuracy of 50.7%, with a precision of 83.1% for permanent gullies and only 9.2% for ephemeral gullies. ③The deep learning method adopts an end-to-end approach, without the need to design feature extractors. It offers a high degree of automation with an overall extraction accuracy of 60.8%, achieving 68.1% accuracy in identifying permanent gullies and 69.7% in recognizing ephemeral gullies.

Key words: black soil region in Northeast China, GF-7 satellite image, flow-directional detection, machine learning, deep learning

中图分类号: