[1] 应申,蒋跃文,顾江岩,等.面向自动驾驶的高精地图模型及关键技术[J].武汉大学学报(信息科学版),2024,49(4):506-515. [2] 吴佳桐,黄龙,王勇,等.智能汽车基础地图安全防控相关问题浅析[J].测绘通报,2023(9):155-159. [3] 刘经南,吴杭彬,郭迟,等.高精度道路导航地图的进展与思考[J].中国工程科学,2018,20(2):99-105. [4] 杨蒙蒙,江昆,温拓朴,等.自动驾驶高精度地图众源更新技术现状与挑战[J].中国公路学报,2023,36(5):244-259. [5] 俞山川,陈雨.高精度地图在智能交通上的应用[J].公路,2023,68(2):218-224. [6] 李必军,郭圆,周剑,等.智能驾驶高精地图发展与展望[J].武汉大学学报(信息科学版),2024,49(4):491-505. [7] 刘经南,詹骄,郭迟,等.智能高精地图数据逻辑结构与关键技术[J].测绘学报,2019,48(8):939-953. [8] 王梓豪,唐炉亮,杨雪,等.利用车载GNSS轨迹大数据的U-Turn道路结构信息获取方法[J].测绘学报,2023,52(8):1330-1341. [9] GUO Y,LI B,LU Z,et al.A novel method for road network mining from floating car data[J].Geo-spatial Information Science,2021(2):197-211. [10] TANG L,YANG X,KAN Z,et al.Lane-level road information mining from vehicle GPS trajectories based on naïve Bayesian classification[J].ISPRS International Journal of Geo-Information,2015,4:2660-2680. [11] HOMAYOUNFAR N,LIANG J,MA W-C,et al.DAGMapper:learning to map by discovering lane topology[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:2911-2920. [12] GUO C,KIDONO K,MEGURO J,et al.A low-cost solution for automatic lane-level map generation using conventional in-car sensors[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(8):2355-2366. [13] ZHOU J,GUO Y,BIAN Y,et al.Lane information extraction for high-definition maps using crowdsourced data[J].IEEE Transactions on Intelligent Transportation Systems,2022:1-11. [14] TIAN W,REN X,YU X,et al.Vision-based mapping of lane semantics and topology for intelligent vehicles[J].International Journal of Applied Earth Observation and Geoinformation,2022,111:102851. [15] XIONG H,ZHU T,LIU Y,et al.Road-model-based road boundary extraction for high definition map via LiDAR[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(10):18456-18465. [16] JUNG J,CHE E,OLSEN M J,et al.Efficient and robust lane marking extraction from mobile LiDAR point clouds[J].ISPRS Journal of Photogrammetry and Remote sensing,2019,147:1-18. [17] JEONG J,CHO Y,KIM A.Road-SLAM:Road marking based SLAM with lane-level accuracy[C]//Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV).Angeles:IEEE,2017:1736-1473. [18] LIANG D,GUO Y,ZHANG S,et al.LineNet:a zoomable CNN for crowdsourced high definition maps modeling in urban environments[J/OL].arXiv.2018-07-16[2023-11-03].http://arxiv.org/pdf/1807.05696. [19] ZHANG P,ZHANG M,LIU J.Real-time HD map change detection for crowdsourcing update based on mid-to-high-end sensors[J].Sensors (Basel),2021,21(7):2477. [20] KIM C,CHO S,SUNWOO M,et al.Crowd-sourced mapping of new feature layer for high-definition map[J].Sensors (Basel),2018,18(12):E4172. [21] JO K,KIM C,SUNWOO M.Simultaneous localization and map change update for the high definition map-based autonomous driving car[J].Sensors (Basel),2018,18(9):E3145. [22] PANNEN D,LIEBNER M,HEMPEL W,et al.How to keep HD maps for automated driving up to date[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA).Paris:IEEE,2020:2288-2294. [23] LIEBNER M,JAIN D,SCHAUSEIL J,et al.Crowdsourced HD map patches based on road model inference and graph-based SLAM[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV).Paris:IEEE,2019:1211-1218. [24] KIM C,CHO S,SUNWOO M,et al.Updating point cloud layer of high definition (hd) map based on crowd-sourcing of multiple vehicles installed LiDAR[J].IEEE Access,2021,9:8028-8046. [25] KIM K,CHO S,CHUNG W.HD map update for autonomous driving with crowdsourced data[J].IEEE Robotics and Automation Letters,2021,6(2):1895-1901. [26] YANG X,TANG L,NIU L,et al.Generating lane-based intersection maps from crowdsourcing big trace data[J].Transportation Research Part C:Emerging Technologies,2018,89:168-187. |