测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 83-87,126.doi: 10.13474/j.cnki.11-2246.2025.0114

• 学术研究 • 上一篇    下一篇

基于多源遥感数据的泸定同震滑坡识别

张雷1, 眭天波2, 黄成兵1, 张净2   

  1. 1. 阿坝师范学院, 四川 汶川 623000;
    2. 四川省第十二地质大队, 四川 宜宾 644002
  • 收稿日期:2024-07-04 发布日期:2025-02-09
  • 通讯作者: 眭天波。E-mail:suitianbo_9@live.com
  • 作者简介:张雷(1984—),男,硕士,助教,研究方向为大数据分析、计算机教育。E-mail:254384743@qq.com
  • 基金资助:
    阿坝州全域生态及文化旅游开发技术研究与应用示范(R23YYJSYJ0005)

Co-seismic landslide classification in Luding using multi-source remote sensing data

ZHANG Lei1, SUI Tianbo2, HUANG Chengbing1, ZHANG Jing2   

  1. 1. ABA Teachers College,Wenchuan 623000, China;
    2. The 12th Geological Brigade of Sichuan, Yibin 644002, China
  • Received:2024-07-04 Published:2025-02-09

摘要: 地震通常会引发大量滑坡,严重危害人民生命财产安全。如何高效利用多源遥感技术实现对震后滑坡快速、准确的识别,是地震灾害应急响应的关键技术之一。本文基于GEE平台,使用多源遥感数据(光学影像、数字高程模型、合成孔径雷达影像),结合机器学习算法(支持向量机(SVM)、随机森林(RF)、梯度提升树(GBT)),对泸定县6.8级地震滑坡进行提取。结果表明,特征较少时,RF模型性能最佳(总体精度OA=93.1%,Kappa=0.859);特征丰富时,GBT模型的性能最佳(OA=96.3%,Kappa=92.3)。滑坡识别中地形特征的重要性最高,其次为遥感光谱指数,SAR影像特征重要性最低。基于最佳滑坡识别模型GBT,研究获取了震区滑坡分布图,滑坡面积约为25.86 km2。本文的研究成果为地震滑坡快速识别,以及在模型、特征的选择上提供了重要参考。

关键词: 遥感, 滑坡识别, GEE, 机器学习, 泸定地震

Abstract: Earthquakes usually trigger a large number of landslides that seriously threaten the safety of people's lives and property. How to effective use multi-source remote sensing technology to rapidly and accurately classify post-earthquake landslides is one of the key technologies for emergency response to earthquake disasters. In this paper, based on the GEE platform, the co-seismic landslides in Luding county after a magnitude 6.8 earthquake are extracted using multi-source remote sensing data (optical images, digital elevation model, synthetic aperture radar images) combined with machine learning algorithms (support vector machine (SVM), random forest (RF), gradient boosted tree (GBT)). The results show that the RF model performs best when there are few features (overall accuracy OA=93.1%, Kappa=0.859) and the GBT model performs best when there are a wealth of features (OA=96.3%, Kappa=92.3). Topographic features had the highest importance for landslide classification, followed by remote sensing spectral indices, and SAR image features had the lowest importance. Based on the best landslide classification model GBT, this study obtained the distribution map of landslides in the seismic area, with a landslide area of about 25.86 km2. The results of this paper provide an important reference for the rapid identification of seismic landslides, in terms of model and feature selection.

Key words: remote sensing, landside classification, GEE, machine learning, Luding earthquake

中图分类号: