[1] 黄金煌,陈勋俊,黄劲松,等. 联合高分一号和哨兵二号的内陆河流叶绿素a浓度反演[J].江西冶金,2023,43(6): 524-532. [2] 刘瑶,李俊生,肖晨超,等.资源一号02D高光谱影像内陆水体叶绿素a浓度反演[J].遥感学报,2022,26(1): 168-178. [3] TANG Xiaodong,HUANG Mutao.Simulation of chlorophyll a concentration in Donghu Lake assisted by environmental factors based on optimized SVM and data assimilation[J].Water,2022,14(15): 2353. [4] 马驰.松嫩平原水体叶绿素a、悬浮物及盐分浓度遥感反演研究[J].节水灌溉,2022(7): 95-101. [5] 刘文雅,邓孺孺,梁业恒,等.基于辐射传输模型的巢湖叶绿素a浓度反演[J].国土资源遥感,2019,31(2): 102-110. [6] 中国科学院南京地理与湖泊研究所.中国湖泊生态环境研究报告[M].北京: 科学出版社,2023. [7] 周博天,张雅燕,施坤.湖泊营养状态遥感评价及其表征参数反演算法研究进展[J].遥感学报,2022,26(1): 77-91. [8] 2023年中国生态环境状况公报(摘录)[J].环境保护,2024,52(11):53-65. [9] 吴仪,邓孺孺,秦雁,等.新丰江水库叶绿素浓度时空分布特征的遥感反演研究[J].遥感技术与应用,2017,32(5): 825-834. [10] PALMER S C,KUTSER T,HUNTER P D.Remote sensing of inland waters: challenges,progress and future directions[J].Remote Sensing of Environment,2015,157: 1-8. [11] 罗婕纯一,秦龙君,毛鹏,等.水质遥感监测的关键要素叶绿素a的反演算法研究进展[J].遥感技术与应用,2021,36(3): 473-488. [12] 张婧.水中叶绿素a测定方法的比较研究[J].科技创新与应用,2022,12(19): 130-134. [13] 潘应阳,国巧真,孙金华.水体叶绿素a浓度遥感反演方法研究进展[J].测绘科学,2017,42(1): 43-48. [14] BINDING C E,GREENBERG T A,BUKATA R P.The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring[J].Journal of Great Lakes Research,2013,39: 100-107. [15] OYAMA Y,MATSUSHITA B,FUKUSHIMA T.Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+shortwave infrared bands[J].Remote Sensing of Environment,2015,157: 35-47. [16] 邓孺孺,何颖清,秦雁,等.分离悬浮质影响的光学波段(400—900nm)水吸收系数测量[J].遥感学报,2012,16(1): 174-191. [17] EL-ALEM A,CHOKMANI K,VENKATESAN A,et al.How accurate is an unmanned aerial vehicle data-based model applied on satellite imagery for chlorophyll-a estimation in freshwater bodies?[J].Remote Sensing,2021,13(6): 1134. [18] 王进,李湘姣,王欢.基于经验模态分解重构方法的北江飞来峡洪水频率分析[J].人民珠江,2024,45(12): 1-10. [19] 王嗣彤,程全国,雷坤,等.温州市鳌江水系叶绿素a和氮、磷的分布特征与富营养化研究[J].环境污染与防治,2024,46(2): 291-296. |