测绘通报 ›› 2025, Vol. 0 ›› Issue (8): 100-106.doi: 10.13474/j.cnki.11-2246.2025.0816

• 学术研究 • 上一篇    下一篇

基于贪心算法与空间关系自优化影像数据集高效筛选方法

董斯源1, 杨元维1, 高贤君1, 谭美淋2, 杜斌2, 屈伟军3, 陈宁生1   

  1. 1. 长江大学地球科学学院, 湖北 武汉 430100;
    2. 内蒙古自治区测绘地理信息中心, 内蒙古 呼和浩特 010050;
    3. 湖南省第二测绘院, 湖南 长沙 421001
  • 收稿日期:2024-12-19 出版日期:2025-08-25 发布日期:2025-09-02
  • 通讯作者: 杨元维。E-mail:yyw_08@yangtzeu.edu.cn E-mail:yyw_08@yangtzeu.edu.cn
  • 作者简介:董斯源(2000—),男,硕士生,主要从事遥感影像智能解译方面的工作。E-mail:dongsy2022@163.com
  • 基金资助:
    湖北省教育厅科学研究计划重点项目(D20231304);西藏自治区科技计划重大专项(XZ202402ZD0001);城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金(2023ZH01);自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室开放基金(MEMI-2021-2022-08);天津市科技计划(23YFYSHZ00190;23YFZCSN00280);湖南省自然科学基金部门联合基金(2024JJ8327);江西省自然科学基金(20232ACB204032);湖南省自然资源科技计划(20230153CH);深地国家科技重大专项(2024ZD1001003)

An efficient image dataset selection method based on the greedy algorithm and spatial relationship self-optimization

DONG Siyuan1, YANG Yuanwei1, GAO Xianjun1, TAN Meilin2, DU Bin2, QU Weijun3, CHEN Ningsheng1   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Inner Mongolia Autonomous Region Center for Surveying, Mapping and Geographic Information, Hohhot 010050, China;
    3. The Second Surveying and Mapping Institute of Hunan Province, Changsha 421001, China
  • Received:2024-12-19 Online:2025-08-25 Published:2025-09-02

摘要: 遥感数据的海量积累使得高效准确地检索出研究区域需求的感兴趣高质量影像集合尤为重要。针对检索结果影像数量多、重叠度高,难以直接满足应用需求的情况,本文设计了一种利用贪心算法与空间关系的自优化影像数据集高效筛选方法。首先基于影像质量和相交关系对影像数据集进行初筛;然后利用贪心算法进行分块筛选;最后利用贪心筛选结果和感兴趣区域拓扑关系的优化策略,提升筛选结果的质量。结果表明,本文方法的筛选结果冗余度明显低于其他方法,利用率明显高于其他方法;本文方法能够高效筛选出一组全覆盖感兴趣区域的成像时间新、含云量少、分辨率高且影像数量少的优质影像数据集。

关键词: 遥感影像, 数据筛选, 全覆盖检索, 贪心算法, 多线程

Abstract: The massive accumulation of remote sensing data makes it particularly important to efficiently and accurately retrieve high-quality image collections that meet the application requirements of the region of interest.To address the large number of retrieved images with high overlap,which makes it difficult to meet application requirements directly,this paper proposes an efficient image dataset selection method based on a greedy algorithm and self-optimization of spatial relationships.Firstly,the image dataset is pre-filtered based on image quality and intersection relationships.Then,a block-based selection is performed using a greedy algorithm.Finally,the quality of the selection results is enhanced through an optimization strategy that integrates the greedy selection results with the topological relationships of the region of interest.The results show that the selection results of the proposed method have significantly lower redundancy and higher utilization than other methods.This method can efficiently select a high-quality image dataset that fully covers the region of interest,featuring recent imaging times,low cloud cover,high resolution,and fewer images.

Key words: remote sensing image, data screening, full coverage retrieval, greedy algorithm, multi-threading

中图分类号: