针对ISODATA算法预设参数较多,其聚类中心与最优迭代数目很难预先准确设定,且在聚类时没有将影像自身特点充分考虑,对个体适应度函数重视不够的问题,本文提出一种融合增强型模糊聚类GA与ISODATA的聚类方法,对聚类原型矩阵进行编码,构造隶属度矩阵,解求个体适应度函数值,在影像特征空间中搜索得到样本全局收敛极值点。通过试验证明,该方法能避开随机初选值的敏感问题,避免聚类过程的随机性,使分类结果与实际情况更为接近,该算法精度优于传统的ISODATA算法与模糊聚类GA算法,提高了分类的精度,整体效果较好。