灰色预测模型GM(1,1)的建模思想是:原始序列(非负序列)经过一次累加生成后,形成一个单调递增数列,新序列中各数据点的连线可以用指数函数y=aebx进行拟合。根据这个指数函数可以推导出下一个累加值的预测值(即第一个预测期),最后通过累减生成将累加序列预测值还原为原始序列预测值。本文通过对原始序列进行指数—幂函数变换,增加了原始序列的光滑度;并在灰参数求取过程中对原始序列赋以权重,利用迭代计算的方法推导出了模型精确背景值;最后通过使预测序列残差平方和最小的方法计算出最优初始条件,进而提出了一个改进后的GM(1,1)模型。利用改进后GM(1,1)模型对某大厦沉降监测数据进行模拟与分析,并对改进前后的模型进行对比与分析,结果表明,改进后模型的各项精度因子相比于传统模型均有所提高,且时间序列越往后的预测值,精度越高。