[1] 路家一. 浅谈机载LiDAR数据特点及处理方法[J].测绘与空间地理信息,2013, 36(8):177-179. [2] 刘学人,胡曼.机载LiDAR点云数据的DSM生成技术研究[J].科技资讯,2012, 23(5):7-8. [3] 杜娜娜,彭军还.基于决策树的机载LiDAR点云数据分类[J].测绘科学,2013,38(3):118-120. [4] STASSOPOULOU A,CAELLI T.Building detection using Bayesian networks[J].International Journal of Pattern Recognition and Artificial Intelligence,2000,14(6):715-733. [5] 谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. [6] NORBERT H,CLAUS B.Extraction of buildings and trees in urban environments[J]. ISPRS Journal of Photogram-metry and Remote Sensing, 1999,54(2):130-137. [7] 刘海娟,张婷,侍昊,等.基于RF模型的高分辨率遥感影像分类评价[J].南京林业大学学报(自然科学版), 2015,39(1):99-103. [8] BREIMAN L.Random forests[J].Machine Learning,2001, 45(1):25-32. [9] PAL M.Random forest classifier for remote sensing classification[J].International Journal of Remote Sensing, 2005,26(1):217-222. [10] GUO L, CHEHATA N, Mallet C, et al. Relevance of airborne lidar and multispectral image data for urban scene classification using random forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011, 66(1):56-66. [11] GHIMIRE B,ROGAN J,GALIANO R, et al.An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA[J]. Giscience & Remote Sensing, 2012,49(5):623-643. [12] 潘锁艳,管海燕.机载多光谱LiDAR数据的地物分类方法[J].测绘学报, 2018,47(2):198-207. [13] 李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265. [14] DÍAZ-URIARTE R, ALVAREZ DE ANDRÉS S. Gene selection and classification of microarray data using random forest[J]. Bmc Bioinformatics, 2006, 7(1):3-10. [15] 李雪,舒宁,李井冈,等.基于特征贡献选择的遥感影像变化检测方法研究[J].武汉大学学报(信息科学版), 2013,38(10):1158-1162. [16] 刘毅,杜培军,郑辉,等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学,2012,37(4):194-196. [17] 周天宁,明冬萍,赵睿.参数优化随机森林算法的土地覆盖分类[J].测绘科学,2017,42(2):88-94. [18] 郭玉宝,池天河,彭玲,等.利用随机森林的高分一号遥感数据进行城市用地分类[J].测绘通报,2016(5):73-76. |