[1] 杨枭. 攀西城市群核心城市扩张及驱动力研究[D]. 成都:成都理工大学, 2016. [2] 中华人民共和国自然资源部.国土资源部关于开展2015年度全国土地变更调查与遥感监测工作的通知[N]. 中国国土资源报, 2015-10-31(05). [3] 唐华俊, 吴文斌, 杨鹏, 等. 土地利用/土地覆被变化(LUCC)模型研究进展[J]. 地理学报, 2009,64(4):456-468. [4] 季顺平, 袁修孝. 一种基于阴影检测的建筑物变化检测方法[J]. 遥感学报, 2007,11(3):323-329. [5] 魏立飞, 牟紫微, 王晓燕, 等. 基于CRF模型的高分辨率遥感影像变化检测[J]. 测绘通报, 2017(9):28-31. [6] 冯文卿, 张永军. 利用多尺度融合进行面向对象的遥感影像变化检测[J]. 测绘学报, 2015,44(10):1142-1151. [7] 李亮, 舒宁, 王凯, 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014,43(9):945-953. [8] GAMANYA R, MAEYER P D, DAPPER D M. Object-oriented change detection for the city of Harare, Zimbabwe[J]. Expert Systems with Applications, 2009,36(1):571-588. [9] BOVOLO F, CAMPS-VALLS G, BRUZZONE L. A support vector domain method for change detection in multitemporal images[J]. Pattern Recognition Letters, 2010,31(10):1148-1154. [10] CSILLIK O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels[J]. Remote Sensing, 2017,9(3):243. [11] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282. [12] 李亮, 申学林, 李胜, 等. 一种综合光谱、纹理、结构特征的高分辨率遥感影像变化检测方法[J]. 测绘通报, 2019(S1):113-118. [13] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6):610-621. [14] PAL M, MATHER P M. An assessment of the effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003,86(4):554-565. [15] CHAN J C, PAELINCKX D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008,112(6):2999-3011. [16] FERNÁNDEZ-DELGADO M, CERNADAS E, BARRO S, et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. Journal of Machine Learning Research, 2014,15(1):3133-3181. [17] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Springer Science & Business Media, 2013. |