[1] MATHAVAN S,KAMAL K,RAHMAN M. A review of three-dimensional imaging technologies for pavement distress detection and measurements[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2353-2362. [2] BEN CHEIKH AHMED N,LAHOUAR S,SOUANI C,et al. Automatic crack detection from pavement images using fuzzy thresholding[C]//Proceedings of 2017 International Conference on Control,Automation and Diagnosis (ICCAD).Hammamet,Tunisia:IEEE,2017:528-537. [3] BUZA E,AKAGIC A,OMANOVIC S,et al. Unsupervised method for detection of high severity distresses on asphalt pavements[C]//Proceedings of the 14th IEEE International Scientific Conference on Informatics. Poprad,Slovakia:IEEE,2018:45-50. [4] TSAI Y C J,CHATTERJEE A. Pothole detection and classification using 3D technology and watershed method[J]. Journal of Computing in Civil Engineering,2018,32(2):10-15. [5] FAN R,OZGUNALP U,HOSKING B,et al. Pothole detection based on disparity transformation and road surface modeling[J]. IEEE Transactions on Image Processing,2020,29:897-908. [6] 晏班夫,徐观亚,栾健,等.基于Faster R-CNN与形态法的路面病害识别[J].中国公路学报,2021,34(9):181-193. [7] GUAN J C,YANG X,DING L,et al. Automated pixel-level pavement distress detection based on stereo vision and deep learning[J]. Automation in Construction,2021,129:103788. [8] 呙维,彭旭,刘异,等. 边缘约束下的分形网络分割算法[J]. 武汉大学学报(信息科学版),2019,44(11):1693-1699. [9] 刘慧敏,舒宁,林卉. 图像边缘信息分析中数学形态学的应用方法[J]. 武汉大学学报(信息科学版),2001,26(4):325-330. [10] 孙开敏,李德仁,眭海刚. 基于多尺度分割的对象级影像平滑算法[J]. 武汉大学学报(信息科学版),2009,34(4):423-426. [11] 沈照庆,彭余华,舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版),2013,38(8):993-997. [12] RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing,2015:234-241. [13] 陈泽斌,罗文婷,李林. 基于改进U-Net模型的路面裂缝智能识别[J]. 数据采集与处理,2020,35(2):260-269. |