[1] 李尧,李术才,徐磊,等.隧道衬砌病害地质雷达探测正演模拟与应用[J].岩土力学,2016,37(12):3627-3634. [2] GUO Haonan,SHI Qian,DU Bo,et al.Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4287-4306. [3] 邵延华,张铎,楚红雨,等.基于深度学习的YOLO目标检测综述[J].电子与信息学报,2022,44(10):3697-3708. [4] 袁珑,李秀梅,潘振雄,等.面向目标检测的对抗样本综述[J].中国图象图形学报,2022,27(10):2873-2896. [5] 张东昊,覃晖.基于探地雷达和深度学习的隧道初期支护检测方法[J].现代隧道技术,2020,57(S1):174-178. [6] QIN Hui,ZHANG Donghao,TANG Yu,et al.Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation[J].Automation in Construction,2021,130:103830. [7] ZHAO Shuai,SHADABFAR M,ZHANG Dongming,et al.Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings[J].Structural Control and Health Monitoring,2021,28(6):e2732.1-e2732.22. [8] 任松,朱倩雯,涂歆玥,等.基于深度学习的公路隧道衬砌病害识别方法[J].浙江大学学报(工学版),2022,56(1):92-99. [9] 彭雨诺,刘敏,万智,等.基于改进YOLO的双网络桥梁表观病害快速检测算法[J].自动化学报,2022,48(4):1018-1032. [10] 朱家松,郑澳,雷占占,等.基于改进Yolov5的地铁隧道附属设施与衬砌表观病害检测方法[J].铁道科学与工程学报,2023,20(3):1008-1019. [11] 冯德山,杨子龙.基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J].地球物理学进展,2020,35(4):1552-1556. [12] 周中,闫龙宾,张俊杰,等.基于YOLOX-G算法的隧道裂缝实时检测[J/OL].铁道科学与工程学报:1-12[2023-07-17].https://doi.org/10.19713/j.cnki.43-1423/u.T20221523. [13] FEDIUK A,WUNDERLICH T,WILKEN D,et al.Ground penetrating radar measurements in shallow water environments-a case study[J].Remote Sensing,2022,14(15):3659. [14] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2022-10-18].https://arxiv.org/abs/2207.02696. |