[1] 黄瑾,陈红霞. 城乡建设用地增减挂钩政策评价——基于文献综述[J]. 中国国土资源经济,2021,34(9):82-89. [2] 张良培,武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报,2017,46(10):1447-1459. [3] 高峰,楚博策,帅通,等. 基于深度学习的耕地变化检测技术[J]. 无线电工程,2019,49(7):571-574. [4] 吕盛坪,李灯辉,冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用,2019,55(20):24-33. [5] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. [6] LECUN Y,BOTTOU L,ORR G B,et al. Efficient BackProp[M]//ORR G B,MÜLLER K R,Eds. Lecture Notes in Computer Science. Berlin,Heidelberg:Springer Berlin Heidelberg,1998:9-50. [7] RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. 2016-09-15[2022-09-22].https://arxiv.org/abs/1609.04747. [8] SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [9] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [10] SZEGEDY C,LIU Wei,JIA Yangqing,et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9. [11] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016:770-778. [12] TONG Xinyi,XIA Guisong,LU Qikai,et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[EB/OL]. 2018-07-16[2022-09-22]. https://arxiv.org/abs/1807.05713. [13] WANG Guoli,FAN Bin,XIANG Shiming,et al. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(9):4104-4115. [14] HUANG Bo,ZHAO Bei,SONG Yimeng. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment,2018,214:73-86. [15] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. 2017-06-17[2022-09-21]. https://arxiv.org/abs/1706.05587. |