[1] 张立福,王飒,刘华亮,等. 从光谱到时谱: 遥感时间序列变化检测研究进展[J]. 武汉大学学报(信息科学版),2021,46(4): 451-468. [2] WANG J,ZHANG A. SAR image change detection based on heterogeneous graph with multiattributes and multirelationships[J].IEEE Access,2022,10:44347-44361. [3] SHI W,ZHANG M,ZHANG R,et al. Change detection based on artificial intelligence: state-of-the-art and challenges[J]. Remote Sensing,2020,12(10):1688. [4] 周圆,李祥瑞,杨晶. 基于混合网络的异源遥感图像变化检测[J]. 北京航空航天大学学报,2021,47(3): 451-460. [5] LÜ Z,HUANG H T,GAO L P,et al. Simple multiscale U-Net for change detection with heterogeneous remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters,2022,61:1-12. [6] ZHANG H,MA G,ZHANG Y. Intelligent-BCD: a novel knowledge-transfer building change detection framework for high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:5065-5075. [7] SHI N,CHEN K,ZHOU G. A divided spatial and temporal context network for remote sensing change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:4897-4908. [8] HAO M,ZHANG H,SHI W,et al. Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images[J]. Remote Sensing Letters,2013,4(12):1185-1194. [9] PAN S,SHI W,HE P,et al. Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm[J]. Remote Sensing,2016,8(3):264. [10] 张慧芳,张鹏林,晁剑. 使用多尺度模糊融合的高分影像变化检测[J]. 武汉大学学报(信息科学版),2022,47(2): 296-303. [11] 冯文卿,张永军. 利用模糊综合评判进行面向对象的遥感影像变化检测[J]. 武汉大学学报(信息科学版),2016,41(7): 875-881. [12] 赵敏,赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报,2018,22(1): 119-131. [13] NIU X,GONG M,ZHAN T,et al. A conditional adversarial network for change detection in heterogeneous images[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(1):45-49. [14] LIU J,GONG M,QIN K,et al.A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(3):545-559. [15] 李轶鲲,杨洋,杨树文,等. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感,2021(4): 82-88. [16] CHEN J,CHEN X,CUI X,et al. Change vector analysis in posterior probability space: a new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters,2010,8(2): 317-321. [17] 邵振峰,白云,周熙然. 改进多尺度Retinex理论的低照度遥感影像增强方法[J]. 武汉大学学报(信息科学版),2015,40(1): 32-39. [18] SHANG R,XIE K,OKOTH M A,et al.SAR image change detection based on mean shift pre-classification and fuzzy C-means[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan:IEEE,2019:2358-2361. [19] 顾明,郑林涛,刘中华. 结合暗原色优先和Gamma校正的红外交通图像增强算法[J]. 交通运输工程学报,2016,16(6): 149-158. [20] LI Mading,LIU Jiaying,YANG Wenhan,et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing,2018,27(6): 2828-2841. [21] GUO Xiaojie,LI Yu,LING Haibin. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2): 982-993. [22] LIU Zhunga,LI Gang,MERCIER G,et al.Change detection in heterogenous remote sensing images via homogeneous pixel transformation[J].IEEE Transactions on Image Processing,2018,27(4):1822-1834. [23] 叶沅鑫,孙苗苗,王蒙蒙,等. 结合邻域信息和结构特征的遥感影像变化检测[J]. 测绘学报,2021,50(10): 1349-1357. |