[1] YUAN Yong,JIANG Xiaomo,LIU Xian. Predictive maintenance of shield tunnels[J]. Tunnelling and Underground Space Technology,2013,38: 69-86. [2] 周宝定,谢沛瑶,郭文浩,等. 基于激光点云灰度图像的隧道渗水病害检测[J]. 测绘通报,2023(8): 34-39. [3] HUANG Hongwei,SUN Yan,XUE Yadong,et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics,2017,32: 188-201. [4] 黄永杰,柳献,袁勇,等. 盾构隧道渗漏水的自动检测技术[J]. 上海交通大学学报,2012,46(1): 73-78. [5] YU Haiyang,HU Yawen,GUO Hongyu,et al. Tunnel moving target detection based on local structure of image and gray scale information[C]//Proceedings of 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE).Singapore:IEEE,2016: 103-107. [6] 彭斌,祝志恒,阳军生,等. 基于全景展开图像的隧道衬砌渗漏水数字化识别方法研究[J]. 现代隧道技术,2019,56(3): 31-37. [7] CHA Y,CHOI W,SUH G,et al. Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering,2018,33(9): 731-747. [8] HUANG Hongwei,LI Qingtong,ZHANG Dongming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology,2018,77: 166-176. [9] GARGEES R,MORAGO B,PELAPUR R,et al. Incident-supporting visual cloud computing utilizing software-defined networking[J]. IEEE Transactions on Circuits and Systems for Video Technology,2017,27(1): 182-197. [10] 李珵,卢小平,朱宁宁,等. 基于激光点云的隧道断面连续提取与形变分析方法[J]. 测绘学报,2015,44(9): 1056-1062. [11] ZHU Xi,WANG Tiejun,DARVISHZADEH R,et al. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2015,110: 14-23. [12] GARROWAY K,HOPKINSON C,JAMIESON R. Surface moisture and vegetation influences on LiDAR intensity data in an agricultural watershed[J]. Canadian Journal of Remote Sensing,2011,37(3): 275-284. [13] KAASALAINEN S,JAAKKOLA A,KAASALAINEN M,et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing,2011,3(10): 2207-2221. [14] KASHANI A,OLSEN M,PARRISH C,et al. A review of LiDAR radiometric processing:form ad hoc intensity correction to rigorous radiometric calibration[J].Sensors,2015,15(11): 28099-28128. [15] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9): 1904-1916. [16] YANG Haiping,YU Bo,LUO Jiancheng,et al. Semantic segmentation of high spatial resolution images with deep neural networks[J].GIS Science & Remote Sensing,2019,56(5):749-768. [17] CHEN Fuchen,JAHANSHAHI M R. NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion[J]. IEEE Transactions on Industrial Electronics,2018,65(5): 4392-4400. [18] 王晓静,唐超,杨晓飞. 激光点云在地铁盾构隧道病害诊断中的应用[J]. 测绘通报,2020(9): 33-37. [19] 谭凯,程效军. 基于多项式模型的TLS激光强度值改正[J]. 中国激光,2015,42(3): 0314002. |