[1] 刘韬,徐爱功,隋心.基于自适应抗差卡尔曼滤波的UWB室内定位[J].传感技术学报,2018,31(4):567-572. [2] RETSCHER G, GIKAS V, HOFER H, et al. Range validation of UWB and Wi-Fi for integrated indoor positioning[J]. Applied Geomatics, 2019(9):1-9. [3] ANGELIS G D, MOSCHITTA A, CARBONE P. Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8):2272-2281. [4] ABDULRAHMAN A, ABDULMALIK A S, MANSOUR A, et al. Ultra wideband indoor positioning technologies:analysis and recent advances[J]. Sensors, 2016, 16(5):707-717. [5] 夏志浩,赵长胜,马晓君.基于有色噪声自适应卡尔曼滤波的GPS单点定位[J].测绘通报,2015(3):66-68. [6] 闫保芳,毛庆洲.一种基于卡尔曼滤波的超宽带室内定位算法[J].传感器与微系统,2017,36(10):137-140. [7] 童基均,金利剑,赵英杰,等.基于自适应卡尔曼滤波的超宽带室内定位系统[J].测试技术学报,2018,32(2):93-99. [8] 赵长胜.测量数据处理研究[M].北京:测绘出版社.2013. [9] 范澎湃,隋立芬,黄贤源.处理有色观测噪声的粒子滤波算法[J].测绘科学技术学报,2009,26(2):89-92. [10] 尹伟,易本顺,沈小丰.有色噪声下基于Unscented粒子滤波的语音增强方法[J].电波科学学报,2009,24(3):476-481. [11] TORMA P, SZEPESVARI C. On using likelihood-adjusted proposals in particle filtering:local importance sampling[C]//Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis[S.l.]:IEEE, 2005. [12] 高怡,高雅,高社生.基于似然分布的样本数自适应UPF算法[J].中国惯性技术学报,2015,23(5):648-652. [13] 傅惠民,吴云章,娄泰山.自适应增量粒子滤波方法[J].航空动力学报,2013,28(8):1764-1768. [14] 崔先强,杨元喜,高为广.多种有色噪声自适应滤波算法的比较[J].武汉大学学报(信息科学版),2006,31(8):731-735. [15] 杨元喜,崔先强.动态定位有色噪声影响函数——以一阶AR模型为例[J].测绘学报,2003,32(1):6-10. |