[1] ARNOLD JR C L, GIBBONS C J. Impervious surface cove-rage:the emergence of a key environment indicator[J]. Journal of the American Planning Association, 1996, 62(2):243-258. [2] OKE T R. Boundary layer climates[M]. London:Rou-tledge, 1987. [3] YU S Q. Study on annual variation of precipitation and urban effect in Beijing[J]. Progress in Natural Science, 2007, 17(5):632-638. [4] AZAR D, GRAESSER J, ENGSTROM R, et al. Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces in Haiti[J]. International Journal of Remote Sensing, 2010, 31(21):5635-5655. [5] 哈尚辰, 阿里木江·卡斯木. 基于土地集约利用水平的城市热岛效应影响因子分析[J]. 冰川冻土, 2016, 38(1):270-278. [6] 李涵, 李龙, 张婷,等. 徐州市中心城区不透水面时空异质性分析[J]. 长江流域资源与环境, 2019, 28(3):178-190. [7] 徐涵秋. 基于谱间特征和归一化指数分析的城市建筑用地信息提[J].地理研究,2005,24(2):311-320. [8] LU D, HERTRIC S, MORAN E. Land cover classification in a complex urban-rural landscape with QuickBird imagery[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(10):1159-1168. [9] 孙志英,赵彦锋,陈杰,等.面向对象分类在城市地表不可透水度提取中的应用[J]. 地理科学,2007,27(6):837-842. [10] WENG Q H, HU X F. Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2397-2406. [11] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [12] HEREMAN S, ORSHOVEN J V. Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders(Belgium):a multi-criteria comparison[J]. International Journal of Remote Sensing, 2015,36(11):2934-2962. [13] FAWAGREH K, GABER M M, ELVAN E. Random forests:from early developments to recent advancements[J]. Systems Science & Control Engineering an Open Access Journal, 2014,2(1):602-609. [14] GAUTAM V K, GAURAV P K, MURUGAN P, et al. Assessment of surface water dynamicsin bangalore using WRI, NDWI, MNDWI, supervised classification and K-T transformation[J]. Aquatic Procedia, 2015, 4:739-746. [15] 杨斌, 高桂胜, 王磊,等. 基于GF-1 WFV和Landsat-8 OLI提取植被信息方法比较研究[J]. 测绘工程, 2018, 27(8):7-12. [16] ZOU T, YANG W, DAI D, et al. Polarimetric SAR image classification using multiple features combination and extremely randomized clustering forests[J]. EURASIP Journal on Advances in Signal Processing, 2010, 49(1). DOI:10.1155/2010/465612. [17] 邵振峰,张源,周伟琪,等.基于测绘卫星影像的城市不透水面提取[J].地理空间信息,2016,14(7):1-5. [18] FROHN R C, CHAUDHARY N. Multi-scale image segmentation and object-oriented processing for land cover classification[J]. Geosciences & Remote Sensing, 2008, 45(4):377-391 [19] ZHU Z, CURTIS E W, JOHN R, et al. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and periurban land cover classification using Landsat and SAR data[J]. Remote Sensing of Environment, 2012, 117:72-82. [20] BEIJMA S V, COMBER A, LAMB A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data[J]. Remote Sensing of Environment, 2014, 149:118-129. [21] 徐涵秋,王美雅.地表不透水面信息遥感的主要方法分析[J],遥感学报,2016,20(5):1270-1289. [22] 赵艺淞,杨昆,王保云,等.随机森林在城市不透水面提取中的应用研究[J],云南师范大学学报(自然科学版),2017,37(3):73-78. |