[1] 刘起鹏. 城市排水管道检测技术的应用与发展[J]. 城市建筑, 2019, 16(3):148-149. [2] ACOSTA A V R, LOPEZ-JUAREZ I, OSORIO-COMP-ARAN R, et al.3D pipe reconstruction employing video information from mobile robots[J]. Applied Soft Computing, 2018, 5(2):75-83. [3] 曾绪财, 张葛祥, 任涛, 等.管道内检测研究进展及展望[J]. 交通信息与安全, 2019, 37(6):20-31. [4] YANG M D, SU T C. Automated diagnosis of sewer pipe defects based on machine learning approaches[J]. Expert Systems with Applications, 2008, 35(3):1327-1337. [5] DENG J, DONG W, SOCHER R, et al. Imagenet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2009. [6] CHA Y J, CHOI W, BVYVKÖZTVRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5):361-378. [7] MAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A, et al. Deep convolutional neural networks for efficient vision based tunnel inspection[C]//Proceedings of 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP).[S.l.]:IEEE, 2015. [8] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//Proceedings of 2016 IEEE International Conference on Image Processing (ICIP).[S.l.]:IEEE, 2016. [9] WANG M, CHENG J C P. Development and improvement of deep learning based automated defect detection for sewer pipe inspection using faster R-CNN[C]//Workshop of the European Group for Intelligent Computing in Engineering.[S.l.]:Springer, 2018. [10] CHEN Y, ZHONG S, CHEN K, et al. Automated detection of sewer pipe defects based on cost-sensitive convolutional neural network[C]//Proceedings of the 2nd International Conference on Signal Processing and Machine Learning.[S.l.]:Leeds, 2019. [11] 李波锋. 基于机器视觉的排水管道缺陷检测算法研究[D]. 广州:广东工业大学, 2015. [12] SOUKUP D, HUBER-MÖRK R. Convolutional neural networks for steel surface defect detection from photometric stereo images[C]//Proceedings of 2014 International Symposium on Visual Computing.[S.l.]:Springer, 2014. [13] CHA Y J, CHOI W, BVYVKÖZTVRK O. Deeplearning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5):361-378. [14] KIM H, KIM H, HONG Y W, et al. Detecting construction equipment using a region-based fully convolutional network and transfer learning[J]. Journal of computing in Civil Engineering, 2018, 32(2):361-372. [15] KUMAR S S, ABRAHAM D M, JAHANSHAHI M R, et al. Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks[J]. Automation in Construction, 2018, 91(4):273-283. [16] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Washington, D.C.:[s.n.], 2016. [17] KUNCHEVA L I, ARNAIZ-GONZÁLEZ Á, DÍEZ-PASTOR J F, et al. Instance selection improves geometric mean accuracy:a study on imbalanced data classification[J]. Progress in Artificial Intelligence, 2019, 8(2):215-228. [18] FOTOUHI S, ASADI S, KATTANM W. A comprehensive data level analysis for cancer diagnosis on imbalanced data[J]. Journal of biomedical informatics, 2019, 90(3):512-524. [19] YANG K, YU Z, WEN X, et al. Hybrid classifier ensemble for imbalanced data[J]. IEEE transactions on neural networks and learning systems, 2019, 31(4):1387-1400. [20] TAO X, LI Q, REN C, et al. Real-value negative selection over-sampling for imbalanced data set learning[J]. Expert Systems with Applications, 2019, 129(3):118-134. |