[1] 刘瑞清,李加林,孙超,等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报,2021,76(7): 1680-1692. [2] 徐逸,甄佳宁,蒋侠朋,等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报,2021,25(3): 737-752. [3] 耿仁方,付波霖,蔡江涛,等. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报,2019,21(8): 1295-1306. [4] WU Ke,CHEN Tao,XU Ying,et al. A novel change detection approach based on spectral unmixing from stacked multitemporal remote sensing images with a variability of endmembers[J]. Remote Sensing,2021,13(13): 2550. [5] 杨倩,李宁云,陈丽,等. 大山包湿地植被群落数量分类及主要种生态位特征研究[J]. 西部林业科学,2020,49(2): 36-42. [6] JAMALI A,MAHDIANPARI M,BRISCO B,et al. Wetland mapping using multi-spectral satellite imagery and deep convolutional neural networks: a case study in Newfoundland and Labrador,Canada[J]. Canadian Journal of Remote Sensing,2021,47(2): 243-260. [7] 左萍萍,付波霖,蓝斐芜,等. 基于无人机多光谱的沼泽植被识别方法[J]. 中国环境科学,2021,41(5): 2399-2410. [8] 肖武,任河,吕雪娇,等. 基于无人机遥感的高潜水位采煤沉陷湿地植被分类[J]. 农业机械学报,2019,50(2): 177-186. [9] GENG Renfang,JIN Shuanggen,FU Bolin,et al. Object-based wetland classification using multi-feature combination of ultra-high spatial resolution multispectral images[J]. Canadian Journal of Remote Sensing,2020,46(6): 784-802. [10] 汪传建,赵庆展,马永建,等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报,2019,50(11): 161-168. [11] ZHANG Meimei,CHEN Fang,TIAN Bangsen,et al. Multi-temporal SAR image classification of coastal plain wetlands using a new feature selection method and random forests[J]. Remote Sensing Letters,2019,10(3): 312-321. [12] LIU Tao. Deep convolutional neural network training enrichment using multi-view object-based analysis of unmanned aerial systems imagery for wetlands classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,139: 154-170. [13] DOS SANTOS FERREIRA A. Weed detection in soybean crops using ConvNets[J]. Computers and Electronics in Agriculture,2017,143: 314-324. [14] 郑卓,方芳,刘袁缘,等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报,2018,47(5): 620-630. [15] HU Fan,XIA Guisong,HU Jingwen,et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing,2015,7(11): 14680-14707. [16] 黄昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉: 武汉大学,2009. [17] 刘戈,姜小光,唐伯惠. 特征优选与卷积神经网络在农作物精细分类中的应用研究[J]. 地球信息科学学报,2021,23(6): 1071-1081. [18] ROBNIK-ŠIKONJA M,KONONENKO I. Theoretical and empirical analysis of Relief F and RRelief F[J]. Machine Learning,2003,53(1/2): 23-69. [19] ZHONG Yanfei,et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment,2020,250: 112012. [20] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6): 1229-1251. |