[1] 张雪花, 滑永胜, 韩成吉. 耕地资源可持续发展的系统动力学仿真分析[J]. 水土保持通报, 2019, 39(3):144-150. [2] 李升发,李秀彬. 耕地撂荒研究进展与展望[J]. 地理学报,2016,71(3):370-389. [3] 徐莉. 城市化进程中如何解决农地抛荒问题:以四川省为例[J]. 农村经济,2010(3):21-24. [4] REY BENAYAS J M,MARTINS A,NICOLAU J M,et al. Abandonment of agricultural land:an overview of drivers and consequences[J/OL]. CABI Reviews,2007:https://doj.org/10.1019/PAVSNNR20072057. [5] YIN H,PRISHCHEPOV A V,KUEMMERLE T,et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series[J]. Remote Sensing of Environment,2018,210:12-24. [6] 王玲玉,周忠发,赵馨,等. 基于地块级时序遥感的喀斯特石漠化地区撂荒地时空演变[J]. 水土保持学报,2020,34(1):92-99. [7] RICHTER R,WANG X J,BACHMANN M,et al. Correction of cirrus effects in Sentinel-2 type of imagery[J]. International Journal of Remote Sensing,2011,32(10):2931-2941. [8] FOGA S,SCARAMUZZA P L,GUO Song,et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment,2017,194:379-390. [9] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150. [10] GAO B C. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment,1996,58(3):257-266. [11] MCFEETERS S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing,1996,17(7):1425-1432. [12] DIEK S,FORNALLAZ F,SCHAEPMAN M E,et al. Barest pixel composite for agricultural areas using landsat time series[J]. Remote Sensing,2017,9(12):1245. [13] NGUYEN C T,CHIDTHAISONG A,KIEU DIEM P,et al. A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using landsat 8[J]. Land,2021,10(3):231. [14] ROY D P,KOVALSKYY V,ZHANG H K,et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity[J]. Remote Sensing of Environment,2016,185:57-70. [15] ZHANG H K,ROY D P,YAN Lin,et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere,surface,and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment,2018,215:482-494. [16] LI J,CHEN B Z. Global revisit interval analysis of Landsat-8/9 and Sentinel-2A/2B data for terrestrial monitoring[J]. Sensors,2020,20(22):6631. [17] WULDER M A,MASEK J G,COHEN W B,et al. Opening the archive:how free data has enabled the science and monitoring promise of Landsat[J]. Remote Sensing of Environment,2012,122:2-10. [18] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Language,1995,20(3):273-297. [19] MANTERO P,MOSER G,SERPICO S B. Partially supervised classification of remote sensing images through SVM-based probability density estimation[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):559-570. [20] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. [21] GREAVES H E,VIERLING L A,EITEL J U H,et al. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne LiDAR and imagery[J]. Remote Sensing of Environment,2016,184:361-373. [22] PAN L,XIA H M,ZHAO X Y,et al. Mapping winter crops using a phenology algorithm,time-series Sentinel-2 and Landsat-7/8 images,and Google Earth Engine[J]. Remote Sensing,2021,13(13):2510. |