[1] PUN T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980, 2(3):223-237. [2] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 9(1):62-66. [3] 丁海勇, 王雨轩, 毛宇琼,等. 基于动态阈值区域分裂合并算法的高分辨率遥感图像分割研究[J]. 测绘通报, 2016(8):145-146. [4] UGOLOTTI R, CAGNONI S. Multi-objective parameter tuning for PSO-based point cloud localization[C]//Advances in Artifical Life and Evolutionary Computation.[S.l.]:Springer, 2014. [5] 申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1):144-149. [6] SAHOO P K, KANUNGO P, MISHRA S. A fast valley-based segmentation for detection of slowly moving objects[J]. Signal Image & Video Processing, 2018,12:1265-1272. [7] 袁玉珠. 改进分数阶达尔文粒子群的多Renyi熵图像分割算法[J]. 测绘通报, 2019(6):34-40. [8] WANG L, CHEN G Q, SHI D, et al. Active contours driven by edge entropy fitting energy for image segmentation[J]. Signal Processing, 2018, 149:27-35. [9] 张新明, 孙印杰, 郑延斌. 二维直方图准分的Otsu图像分割及其快速实现[J]. 电子学报, 2011,39(8):1778-1784. [10] 林文杰,李玉,赵泉华. 结合MST划分和RHMRF-FCM算法的高分辨率遥感图像分割[J]. 测绘学报, 2019, 48(1):64-74. [11] 杨绪业, 李傲雪, 徐帅婧,等. 基于最小类平均绝对偏差算法的遥感图像分割[J]. 中国激光,2014, 41(S1):S109011. [12] CHANG H H, ZHUANG A H, VALENTINO D J, et al. Performance measure characterization for evaluating neuroimage segmentation algorithms[J]. NeuroImage, 2009, 47(1):122-135. [13] TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation:analysis, selection, and tool[J]. BMC Medical Imaging, 2015, 15(1):29. [14] MANIKANDAN S, RAMAR K, IRUTHAYARAJAN M W, et al. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm[J]. Measurement, 2014, 47(1):558-568. [15] 韦春桃, 赵平, 肖博林,等. 结合双树复小波纹理特征和MRF模型的遥感图像分割[J]. 测绘通报, 2019(10):40-45. |