[1] 经济日报.《“十四五”公路养护管理发展纲要》印发—发挥公路资产最大功用[EB/OL].2022-05-11.https://www.gov.cn/zhengce/2022-05/11/content_5689580. [2] 晏班夫,徐观亚,栾健,等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报,2021,34(9): 181-193. [3] SONG Weidong,JIA Guohui,JIA Di,et al. Automatic pavement crack detection and classification using multiscale feature attention network[J]. IEEE Access,2019,7: 171001-171012. [4] MAJIDIFARD H,ADU-GYAMFI Y,BUTTLAR W G. Deep machine learning approach to develop a new asphalt pavement condition index[J]. Construction and Building Materials,2020,247: 118513. [5] STRICKER R,AGANIAN D,SESSELMANN M,et al. Road surface segmentation-pixel-perfect distress and object detection for road assessment[C]//Proceedings of 2021 IEEE International Conference on Automation Science and Engineering (CASE). Lyon: IEEE,2021: 1789-1796. [6] ZHANG Ce,NATEGHINIA E,MIRANDA-MORENO L F,et al. Pavement distress detection using convolutional neural network (CNN): a case study in Montreal,Canada[J]. International Journal of Transportation Science and Technology,2022,11(2): 298-309. [7] XU Zhengsen,GUAN Haiyan,KANG Jian,et al. Pavement crack detection from CCD images with a locally enhanced transformer network[J]. International Journal of Applied Earth Observation and Geoinformation,2022,110: 102825. [8] SHI Yong,CUI Limeng,QI Zhiquan,et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(12): 3434-3445. [9] YANG Fan,ZHANG Lei,YU Sijia,et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems,2020,21(4): 1525-1535. [10] CHAMBON S,MOLIARD J M. Automatic road pavement assessment with image processing: review and comparison[J]. International Journal of Geophysics,2011,2011: 1-20. [11] ZOU Qin,ZHANG Zheng,LI Qingquan,et al. DeepCrack: learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing,2019,28(3): 1498-1512. [12] 翁飘,陆彦辉,齐宪标,等. 基于改进的全卷积神经网络的路面裂缝分割技术[J]. 计算机工程与应用,2019,55(16): 235-239. [13] 朱苏雅,杜建超,李云松,等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报,2019,46(4): 35-42. [14] 张志华,邓砚学,张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全,2022,40(3): 127-135. [15] SUN Ke,XIAO Bin,LIU Dong,et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA:IEEE,2019:5686-5696. [16] PERJU V,CASASENT D,MARDARE I. Image complexity matrix for pattern and target recognition based on Fourier spectrum analysis[C]// Proceedings of 2009 SPIE Defense,Security and Sensing. Orlando,Florida: 2009,7340: 209-217. [17] RONNEBERGER O,FISCHER P,BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing,2015: 234-241. [18] ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al. Pyramid scene parsing network[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI: IEEE,2017: 6230-6239. [19] CHEN L C,ZHU Yukun,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing,2018: 833-851. |