[1] 成都市工程建设项目“多测合一”技术细则(试行)[EB/OL].[2023-04-10].http://mpnr.chengdu.gov.cn/ghhzrzyj/sjwj/2019-12/20/fec7f6be51384dbab9d004533055be44/files/dcab4f283d3a41d189cfb36c82cdc81e.pdf. [2] 赵若鹏.测绘新技术在建筑工程规划竣工测量中的应用研究[D].武汉: 湖北工业大学, 2018. [3] 尚金光,张小波,陈超,等.三维激光扫描点云及其全景技术在“多测合一”中的应用[J].城市勘测,2020(2): 57-61. [4] 倪福泽.加权总体最小二乘效率优化算法及其在测绘数据处理中的应用[D].太原: 太原理工大学,2020. [5] 王峰,林鸿,李长辉.地面三维激光扫描技术在城市测绘中的应用[J].测绘通报,2012(5): 47-49. [6] 王文曦,李乐林.深度学习在点云分类中的研究综述[J].计算机工程与应用,2022,58(1): 26-40. [7] BOULCH A,GUERRY J,LE SAUX B,et al.SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J].Computers & Graphics,2018,71: 189-198. [8] MATURANA D,SCHERER S.VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Hamburg,Germany: IEEE,2015: 922-928. [9] CHARLES R Q,HAO Su,MO Kaichun,et al.PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu: IEEE,2017: 77-85. [10] QI C R,YI Li,SU Hao,et al.PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York: ACM Press,2017: 5105-5114. [11] HU Qingyong,YANG Bo,XIE Linhai,et al.RandLA-net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle: IEEE,2020: 11105-11114. [12] ZHOU Yin,TUZEL O.VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City: IEEE,2018: 4490-4499. [13] 郭昌龙,夏振平,李超超,等.结合改进半径滤波和局部平面拟合的点云去噪算法[J/OL].激光与光电子学进展: 1-11.[2023-12-20].http://kns.cnki.net/kcms/detail/31.1690.tn.20230920.1045.016.html. [14] ZHANG Wuming,QI Jianbo,WAN Peng,et al.An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J].Remote Sensing,2016,8(6): 501. [15] 贾洋,李升甫,周城宇,等.高速公路典型要素语义分割深度学习模型适用性分析[J].北京测绘,2022,36(10): 1365-1369. |