[1] 李镇,齐志国,秦伟,等.利用高分立体影像构建东北黑土山地丘陵区切沟体积估算模型[J].农业工程学报,2021,37(7):122-130. [2] 李保国,刘忠,黄峰,等.巩固黑土地粮仓保障国家粮食安全[J].中国科学院院刊,2021,36(10):1184-1193. [3] 刘宝元,阎百兴,沈波,等.东北黑土区农地水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):1-8. [4] 秦伟,殷哲,曹文洪,等.东北黑土区侵蚀沟系统防治现状与未来[J].泥沙研究,2021,46(3):72-80. [5] DAGGUPATI P,SHESHUKOV A Y,DOUGLAS-MANKIN K R.Evaluating ephemeral gullies with a process-based topographic index model[J].CATENA,2014,113:177-186. [6] YANG Xin,NA Jiaming,TANG Guoan,et al.Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China[J].Frontiers of Earth Science,2019,13(1):151-168. [7] SHRUTHI R B V,KERLE N,JETTEN V.Object-based gully feature extraction using high spatial resolution imagery[J].Geomorphology,2011,134(3/4):260-268. [8] 张琪,张光辉,张岩,等.基于不同分辨率遥感影像自动提取切沟的精度分析和转换模型[J].遥感技术与应用,2022,37(5):1217-1226. [9] HUANG Lingcao,LIU Lin,JIANG Liming,et al.Automatic mapping of thermokarst landforms from remote sensing images using deep learning:a case study in the northeastern Tibetan Plateau[J].Remote Sensing,2018,10(12):2067. [10] LIU Boyang,ZHANG Biao,FENG Hao,et al.Ephemeral gully recognition and accuracy evaluation using deep learning in the hilly and gully region of the Loess Plateau in China[J].International Soil and Water Conservation Research,2022,10(3):371-381. [11] 姜芸,王军,张莉.东北典型黑土区侵蚀沟形态及分布特征[J].农业工程学报,2020,36(7):157-165. [12] 李镇,秦伟,齐志国,等.东北漫川漫岗和山地丘陵黑土区侵蚀沟形态特征遥感分析[J].农业工程学报,2019,35(14):133-140. [13] WANG B W,ZHANG Z X,ZHAO X L,et al.Object-based mapping of gullies using optical images:a case study in the black soil region,northeast of China[J].Remote Sensing,2020,12(3):487. [14] 于佩鑫,周询,刘素红,等.东北黑土区侵蚀沟遥感影像特征提取与识别[J].遥感学报,2018,22(4):611-620. [15] 李坤衡,张岩,陈昶,等.松嫩典型黑土区耕地切沟密度分布特征及影响因子[J].农业工程学报,2023,39(6):130-138. [16] YANG Jiuchun,ZHANG Shuwen,CHANG Liping,et al.Gully erosion regionalization of black soil area in northeastern China[J].Chinese Geographical Science,2017,27(1):78-87. [17] WANG Biwei,ZHANG Zengxiang,WANG Xiao,et al.The suitability of remote sensing images at different resolutions for mapping of gullies in the black soil region,northeast China[J].Remote Sensing,2021,13(12):2367. [18] DAI Wen,HU Guanghui,YANG Xin,et al.Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection[J].Journal of Mountain Science,2020,17(12):3024-3038. [19] LIU Kai,NA Jiaming,FAN Chenyu,et al.Large-scale detection of the tableland areas and erosion-vulnerable hotspots on the Chinese Loess Plateau[J].Remote Sensing,2022,14(8):1946. [20] LIU Baoyuan,XIE Yun,LI Zhiguang,et al.The assessment of soil loss by water erosion in China[J].International Soil and Water Conservation Research,2020,8(4):430-439. [21] 晏实江,汤国安,李发源,等.利用DEM边缘检测进行黄土地貌沟沿线自动提取[J].武汉大学学报(信息科学版),2011,36(3):363-367. [22] NA Jiaming,YANG Xin,DAI Wen,et al.Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area[J].Physical Geography,2018,39(4):368-386. [23] D'OLEIRE-OLTMANNS S,MARZOLFF I,TIEDE D,et al.Detection of gully-affected areas by applying object-based image analysis (OBIA) in the region of Taroudannt,Morocco[J].Remote Sensing,2014,6(9):8287-8309. [24] SHRUTHI R B V,KERLE N,JETTEN V,et al.Quantifying temporal changes in gully erosion areas with object oriented analysis[J].Catena,2015,128:262-277. [25] PRASAD A M,IVERSON L R,LIAW A.Newer classification and regression tree techniques:bagging and random forests for ecological prediction[J].Ecosystems,2006,9(2):181-199. [26] SUN Ke,XIAO Bin,LIU Dong,et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:5686-5696. [27] 陈智朗,付振华,朱紫阳,等.基于HRNet的高分辨率遥感影像建筑物变化信息提取[J].测绘通报,2022(5):126-132. [28] ZHANG Yifu,WANG Chunyu,WANG Xinggang,et al.FairMOT:on the fairness of detection and re-identification in multiple object tracking[J].International Journal of Computer Vision,2021,129(11):3069-3087. [29] STEHMAN S V.Selecting and interpreting measures of thematic classification accuracy[J].Remote Sensing of Environment,1997,62(1):77-89. |