测绘通报 ›› 2018, Vol. 0 ›› Issue (10): 22-26.doi: 10.13474/j.cnki.11-2246.2018.0308

• 学术研究 • 上一篇    下一篇

一种基于空间信息和遗传算法的半监督高光谱图像分类方法

胡冬翠1, 谢福鼎1, 杨俊1, 张永2   

  1. 1. 辽宁师范大学城市与环境学院, 辽宁 大连 116029;
    2. 辽宁师范大学计算机与信息技术学院, 辽宁 大连 116029
  • 收稿日期:2017-12-09 修回日期:2018-06-12 出版日期:2018-10-25 发布日期:2018-10-31
  • 作者简介:胡冬翠(1992-),女,硕士生,主要从事空间数据挖掘方面的研究。E-mail:576449958@qq.com
  • 基金资助:
    国家自然科学基金(41771178;61772252)

A Method of Semi-supervised Classification for Hyperspectral Images Based on Spatial Information and Genetic Optimization

HU Dongcui1, XIE Fuding1, YANG Jun1, ZHANG Yong2   

  1. 1. College of Urban and Environment, Liaoning Normal University, Dalian 116029, China;
    2. College of Computer and Information Technology, Liaoning Normal University, Dalian 116029, China
  • Received:2017-12-09 Revised:2018-06-12 Online:2018-10-25 Published:2018-10-31

摘要: 在诸多的降维方法中,由于谱方法实现简单,近年来得到了广泛的应用。在谱方法中,图的构造及相似度函数的选择是影响降维效果的关键因素。本文基于像素点的空间近邻信息、遗传算法、谱方法和少量标签样本点,提出了一种半监督的高光谱图像分类方法。首先通过考虑样本点的空间信息和少量有标签样本点的类信息,构造了新的相似度函数;然后用K近邻方法和遗传算法得到优化图,基于优化的图,用谱方法进行数据降维;最后通过局部平均伪近邻方法进行聚类分析,并在两个经典的高光谱图像SalinasA数据集和Botswana数据集上进行测试,结果表明本文提出的方法能达到较高的分类精度。

关键词: 谱聚类, 遗传算法, 空间信息, 高光谱图像, 半监督分类

Abstract: Among many dimensionality reduction methods,because of the simplicity of spectral methods,it has been widely applied in recent years.In the spectral method,the construction of graph and the selection of similarity function are the key factors affecting the dimensionality reduction effect.A semi-supervised hyperspectral image classification method is proposed based on spatial nearest neighbor information,genetic algorithm,spectral method and a small number of label sample points.The algorithm firstly constructs a new similarity function by considering the spatial information of the sample points and the class information of a small number of labeled sample points.Then K-nearest neighbor method and genetic algorithm are used to obtain the optimal graph.Based on the optimized graph,the spectral method is used to reduce the dimension of the data.Final adoption the local average pseudo-nearest neighbor method is applied to cluster analysis.In this paper,two classical hyperspectral images SalinasA data sets and Botswana data sets are tested.The results show that the proposed method can achieve high classification accuracy.

Key words: spectral clustering, genetic algorithm, spatial information, hyperspectral image, semi-supervised classification

中图分类号: