测绘通报 ›› 2019, Vol. 0 ›› Issue (10): 51-55.doi: 10.13474/j.cnki.11-2246.2019.0317

• 学术研究 • 上一篇    下一篇

小数据集中的小型建筑物提取方法研究

杨旭勃, 田金文   

  1. 华中科技大学人工智能与自动化学院, 湖北 武汉 430074
  • 收稿日期:2019-02-21 出版日期:2019-10-25 发布日期:2019-10-26
  • 作者简介:杨旭勃(1993-),男,硕士生,主要研究方向为计算机视觉。E-mail:yangxubo@hust.edu.cn
  • 基金资助:
    国家自然科学基金(61273279)

Research on small building extraction method in small dataset

YANG Xubo, TIAN Jinwen   

  1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2019-02-21 Online:2019-10-25 Published:2019-10-26

摘要: 遥感卫星影像一般尺寸较大,而包含有小型建筑物的区域占比较小,如果采用滑动切块扩增数据样本的方法,大部分切片中没有目标,而构建包含大量小建筑物的大型数据集费工费时。常规的方法在高分辨率卫星影像上提取小型建筑物非常困难,研究适用于小规模数据集的小型建筑物提取任务的提取方法具有重要理论意义和应用价值。本文提出了一种轻量化的全连接分割网络ZF-FCN,使用较小的感受野获取更多局部信息,使用较少的最大池化操作避免剧烈的下采样,使用Lovász-Softmax损失解决样本不平衡问题,使网络训练更稳定也更好地优化交并比。最后构建了一个主要包含小型建筑物的小规模数据集,试验在对不同切块大小进行数据增强后进行。对比试验表明,ZF-FCN在建筑物提取任务上的表现优于FCN和U-Net。

关键词: 建筑物提取, 全连接网络, 感受野, 语义分割, 上采样

Abstract: The remote sensing satellite images are generally large, while the area containing small buildings is relatively small. If sliding cropping is used to augment data, most of the cropped patches have no targets, and a large dataset containing a large number of small buildings is time-consuming and labor intensive to construct. It is very difficult for conventional methods to extract small buildings on high-resolution satellite imagery and of great theoretical significance and application value to study the small building extraction method suitable for small-scale datasets. In this paper, a new lightweight and fully connected network ZF-FCN is proposed. ZF-FCN uses a small receptive field to obtain more local information, uses less max pooling operations to avoid violent down-sampling, and uses Lovász-Softmax loss to solve sample imbalance problem and better optimizes the IoU metric. A dataset consisted of a small number of images containing mainly small buildings is established in this paper, and the experiment is carried out on the augmented dataset with different cropping sizes, which finally proves that ZF-FCN outperforms both FCN and U-Net.

Key words: building extraction, fully connected network, receptive field, semantic segmentation, up-sampling

中图分类号: