[1] |
安文, 杨俊峰, 赵羲, 等. 高分辨率遥感影像的建筑物自动提取[J]. 测绘科学, 2014, 39(11):80-84.
|
[2] |
侯蕾, 尹东, 尤晓建. 一种遥感图像中建筑物的自动提取方法[J]. 计算机仿真, 2006, 23(4):184-187.
|
[3] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:3431-3440.
|
[4] |
RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]:Springer, 2015:234-241.
|
[5] |
刘文涛, 李世华, 覃驭楚. 基于全卷积神经网络的建筑物屋顶自动提取[J]. 地球信息科学学报, 2018, 20(11):1562-1570.
|
[6] |
伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 47(6):864-872.
|
[7] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Zürich:Springer, 2014:818-833.
|
[8] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on ICLR.[S.l.]:arXiv, 2014.
|
[9] |
IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.[S.l.]:arXiv, 2015.
|
[10] |
ODENA A, DUMOULIN V, OLAH C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1(10):e3.
|
[11] |
RAKHLIN A, DAVYDOW A, NIKOLENKO S. Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City:IEEE, 2018:257-2574.
|
[12] |
BERMAN M, TRIKI R A, BLASCHKO M B. The Lovász-Softmax loss:a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:4413-4421.
|
[13] |
CONGALTON R G. A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data[J]. Photogrammetric Engineering and Remote Sensing, 1988,54(5):593-600.
|
[14] |
QIAN N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1):145-151.
|
[15] |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence And Statistics. Sardinia:[s.n.], 2010:249-256.
|