[1] 李仔麒, 马慧彬, 李殿奎, 等. 改进区域生长法的肝部CT图像ROI提取[J]. 计算机技术与发展, 2019, 29(1):150-153. [2] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [3] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Conference on Computer Vision and Pattern Recognition.San Diego, CA:IEEE Computer Society, 2005:886-893. [5] EL KHADIRI I, KAS M, EL MERABET Y, et al. Repulsive- and-attractive local binary gradient contours:new and efficient feature descriptors for texture classification[J].Information Sciences, 2018(467):634-653. [6] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995(3):273-197. [7] LODHA S K, FITZPATRICK D M, HELMBOLD D P. Aerial LiDAR data classification using AdaBoost[C]//Proceedings of the 6th International Conference on 3D Digital Imaging and Modeling. Montreal. QC:IEEE Computer Society, 2007:435-442. [8] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J].测绘学报, 2017,46(10):311-318. [9] 浦石, 李京伟, 郭四清. 融合语义特征与GPS位置的地面激光点云拼接方法[J].测绘学报,2014,47(6):545-550. [10] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago:IEEE Computer Society, 2015:945-953. [11] QI C R, SU H, NIESSNER M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society, 2016:5648-5656. [12] WU B,WAN A. YUE X, et al. SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD:IEEE Computer Society, 2018:1887-1893. [13] CHARLES R Q, SU H, KAICHUN M, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE Computer Society, 2017:77-85. [14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,39(16):1137-1149. [15] 杨嘉树, 梅天灿, 仲思东. 顾及局部特性的CNN在遥感影像分类的应用[J]. 计算机工程与应用, 2018, 57(7):188-195. |